Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
178
result(s) for
"Zamponi, Gerald W"
Sort by:
Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments
by
Chichorro, Juliana G.
,
Zamponi, Gerald W.
,
Gambeta, Eder
in
Animals
,
Anticonvulsants
,
Anticonvulsants - administration & dosage
2020
The trigeminal nerve (V) is the fifth and largest of all cranial nerves, and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2), and mandibular (V3); their cell bodies are located in the trigeminal ganglia and they make connections with second-order neurons in the trigeminal brainstem sensory nuclear complex. Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia. Trigeminal neuralgia is characterized by sudden, brief, and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. Trigeminal neuralgia etiology can be classified into idiopathic, classic, and secondary. Classic trigeminal neuralgia is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage-gated sodium channel expression in the membrane. These alterations may be responsible for pain attacks in trigeminal neuralgia patients. The antiepileptic drugs carbamazepine and oxcarbazepine are the first-line pharmacological treatment for trigeminal neuralgia. Their mechanism of action is a modulation of voltage-gated sodium channels, leading to a decrease in neuronal activity. Although carbamazepine and oxcarbazepine are the first-line treatment, other drugs may be useful for pain control in trigeminal neuralgia. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen, and botulinum toxin type A can be coadministered with carbamazepine or oxcarbazepine for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of oxcarbazepine, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.
Journal Article
Regulating excitability of peripheral afferents: emerging ion channel targets
2014
Voltage-gated ion channels are key regulators of noxious signal transmission at the level of the periphery. In this Review, Zamponi and Waxman discuss recent advances in our understanding of the role of some of these channels in pain processing in primary afferent neurons, their dysfunction in congenital and acquired disease states and emerging possibilities for new analgesics.
The transmission and processing of pain signals relies critically on the activities of ion channels that are expressed in afferent pain fibers. This includes voltage-gated channels, as well as background (or leak) channels that collectively regulate resting membrane potential and action potential firing properties. Dysregulated ion channel expression in response to nerve injury and inflammation results in enhanced neuronal excitability that underlies chronic neuropathic and inflammatory pain. Pharmacological modulators of ion channels, particularly those that target channels on peripheral neurons, are being pursued as possible analgesics. Over the past few years, a number of different types of ion channels have been implicated in afferent pain signaling. Here we give an overview of recent advances on sodium, calcium, potassium and chloride channels that are emerging as especially attractive targets for the treatment of pain.
Journal Article
The N-type calcium channel rises from the ashes
by
Gandini, Maria A
,
Zamponi, Gerald W
in
Animals
,
Calcium Channel Blockers - pharmacology
,
Calcium Channel Blockers - therapeutic use
2025
Chronic pain is a debilitating condition that affects up to 1.5 billion people globally. Advancing pain management depends on a thorough understanding of the types of pain experienced by patients and the underlying mechanisms driving it. N-type calcium channels play a crucial role as therapeutic targets for managing chronic pain. In this issue of the JCI, Tang et al. introduce C2230, an N-type calcium channel blocker that inhibited CaV2.2 channels during high frequency stimulation with little effect on other ion channels in the pain pathway across multiple models. C2230 offers a promising analgesic for use in therapeutic intervention.
Journal Article
Central and peripheral contributions of T-type calcium channels in pain
by
Harding, Erika K.
,
Zamponi, Gerald W.
in
Afferent Pathways
,
Analgesia
,
Biomedical and Life Sciences
2022
Chronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Ca
v
3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Journal Article
Targeting voltage-gated calcium channels in neurological and psychiatric diseases
2016
Key Points
Voltage-gated calcium channels are of critical importance for nervous system function at the cellular and network levels.
Aberrant calcium channel function is associated with a wide range of neurological and psychiatric conditions.
Calcium channel dysfunction can occur as a result of mutations in genes encoding calcium channels, or owing to alterations in channel trafficking and regulation.
Calcium channel blockers may be effective in the treatment of Parkinson disease, drug addiction, pain, anxiety and epilepsy.
Cell-specific alternative splicing of calcium channel genes creates additional calcium channel diversity and is an important consideration in drug design.
The development of new calcium channel inhibitors is challenging, and may require unconventional approaches such as targeting associations with interacting proteins.
Dysfunction of voltage-gated calcium channels is associated with a variety of neurological and psychiatric conditions. Several drugs that block these channels are already in clinical use, with new agents currently in development. Here, Zamponi highlights the functions of voltage-gated calcium channels and assesses their potential as therapeutic targets for nervous system disorders.
Voltage-gated calcium channels are important regulators of brain, heart and muscle functions, and their dysfunction can give rise to pathophysiological conditions ranging from cardiovascular disorders to neurological and psychiatric conditions such as epilepsy, pain and autism. In the nervous system, calcium channel blockers have been used successfully to treat absence seizures, and are emerging as potential therapeutic avenues for pathologies such as pain, Parkinson disease, addiction and anxiety. This Review provides an overview of calcium channels as drug targets for nervous system disorders, and discusses potential challenges and opportunities for the development of new clinically effective calcium channel inhibitors.
Journal Article
Electrophysiological characterization of a CaV3.1 calcium channel mutation linked to trigeminal neuralgia
by
Gambeta, Eder
,
Alaklabi, Abdulaziz M
,
Zamponi, Gerald W
in
Action potential
,
Calcium
,
Calcium channels (T-type)
2023
Trigeminal neuralgia is a rare and debilitating disorder that affects one or more branches of the trigeminal nerve, leading to severe pain attacks and a poor quality of life. It has been reported that the CaV3.1 T-type calcium channel may play an important role in trigeminal pain and a recent study identified a new missense mutation in the CACNA1G gene that encodes the pore forming α1 subunit of the CaV3.1 calcium channel. The mutation leads to a substitution of an Arginine (R) by a Glutamine (Q) at position 706 in the I-II linker region of the channel. Here, we used whole-cell voltage-clamp recordings to evaluate the biophysical properties of CaV3.1 wild-type and R706Q mutant channels expressed in tsA-201 cells. Our data indicate an increase in current density in the R706Q mutant, leading to a gain-of-function effect, without changes in the voltage for half activation. Moreover, voltage clamp using an action potential waveform protocol revealed an increase in the tail current at the repolarization phase in the R706Q mutant. No changes were observed in the voltage-dependence of inactivation. However, the R706Q mutant displayed a faster recovery from inactivation. Hence, the gain-of-function effects in the R706Q CaV3.1 mutant have the propensity to impact pain transmission in the trigeminal system, consistent with a contribution to trigeminal neuralgia pathophysiology.
Journal Article
Spared nerve injury leads to reduced activity of neurons projecting from the ventrolateral periaqueductal gray to the locus coeruleus
by
Zhang, Zizhen
,
Zamponi, Gerald W.
,
Yu, Wing Lam
in
Action Potentials - physiology
,
Analysis
,
Animals
2024
The ventrolateral periaqueductal gray (vlPAG) serves as a central hub for descending pain modulation. It receives upstream projections from the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (vlOFC), and projects downstream to the locus coeruleus (LC) and the rostroventral medulla (RVM). While much research has focused on upstream circuits and the LC-RVM connection, less is known about the PAG-LC circuit and its involvement in neuropathic pain. Here we examined the intrinsic electrophysiological properties of vlPAG-LC projecting neurons in Sham and spared nerve injury (SNI) operated mice. Injection of the retrotracer Cholera Toxin Subunit B (CTB-488) into the LC allowed the identification of LC-projecting neurons in the vlPAG. Electrophysiological recordings from CTB-488 positive cells revealed that both GABAergic and glutamatergic cells that project to the LC exhibited reduced intrinsic excitability after peripheral nerve injury. By contrast, CTB-488 negative cells did not exhibit alterations in firing properties after SNI surgery. An SNI-induced reduction of LC projecting cells was confirmed with c-fos labeling. Hence, SNI induces plasticity changes in the vlPAG that are consistent with a reduction in the descending modulation of pain signals.
Journal Article
A molecular complex of Cav1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation—transcription coupling
by
Giles, Wayne R.
,
Zamponi, Gerald W.
,
Suzuki, Yoshiaki
in
Accumulation
,
Biological Sciences
,
Ca2+/calmodulin-dependent protein kinase
2022
Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation—transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.
Journal Article
Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents
by
Burma, Nicole E
,
Baimel, Corey
,
Bonin, Robert P
in
631/378
,
631/378/2596
,
Adenosine Triphosphate - metabolism
2017
The release of ATP from spinal microglia via pannexin-1 channels is required for withdrawal symptoms after termination of chronic opioid treatment in rodents, and pharmacological blockade of pannexin-1 channels reduces the severity of withdrawal without affecting opiate analgesia.
Opiates are essential for treating pain, but termination of opiate therapy can cause a debilitating withdrawal syndrome in chronic users. To alleviate or avoid the aversive symptoms of withdrawal, many of these individuals continue to use opiates
1
,
2
,
3
,
4
. Withdrawal is therefore a key determinant of opiate use in dependent individuals, yet its underlying mechanisms are poorly understood and effective therapies are lacking. Here, we identify the pannexin-1 (Panx1) channel as a therapeutic target in opiate withdrawal. We show that withdrawal from morphine induces long-term synaptic facilitation in lamina I and II neurons within the rodent spinal dorsal horn, a principal site of action for opiate analgesia. Genetic ablation of
Panx1
in microglia abolished the spinal synaptic facilitation and ameliorated the sequelae of morphine withdrawal. Panx1 is unique in its permeability to molecules up to 1 kDa in size and its release of ATP
5
,
6
. We show that Panx1 activation drives ATP release from microglia during morphine withdrawal and that degrading endogenous spinal ATP by administering apyrase produces a reduction in withdrawal behaviors. Conversely, we found that pharmacological inhibition of ATP breakdown exacerbates withdrawal. Treatment with a Panx1-blocking peptide (
10
panx) or the clinically used broad-spectrum Panx1 blockers, mefloquine or probenecid, suppressed ATP release and reduced withdrawal severity. Our results demonstrate that Panx1-mediated ATP release from microglia is required for morphine withdrawal in rodents and that blocking Panx1 alleviates the severity of withdrawal without affecting opiate analgesia.
Journal Article
The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2 T-type calcium channels
by
Zamponi, Gerald W.
,
Huang, Sun
,
Gadotti, Vinicius M.
in
Analgesics
,
Animals
,
Biomedical and Life Sciences
2021
T-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund’s adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.
Journal Article