Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
654 result(s) for "Zarate, Carlos A"
Sort by:
Prognosis and improved outcomes in major depression: a review
Treatment outcomes for major depressive disorder (MDD) need to be improved. Presently, no clinically relevant tools have been established for stratifying subgroups or predicting outcomes. This literature review sought to investigate factors closely linked to outcome and summarize existing and novel strategies for improvement. The results show that early recognition and treatment are crucial, as duration of untreated depression correlates with worse outcomes. Early improvement is associated with response and remission, while comorbidities prolong course of illness. Potential biomarkers have been explored, including hippocampal volumes, neuronal activity of the anterior cingulate cortex, and levels of brain-derived neurotrophic factor (BDNF) and central and peripheral inflammatory markers (e.g., translocator protein (TSPO), interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor alpha (TNFα)). However, their integration into routine clinical care has not yet been fully elucidated, and more research is needed in this regard. Genetic findings suggest that testing for CYP450 isoenzyme activity may improve treatment outcomes. Strategies such as managing risk factors, improving clinical trial methodology, and designing structured step-by-step treatments are also beneficial. Finally, drawing on existing guidelines, we outline a sequential treatment optimization paradigm for selecting first-, second-, and third-line treatments for acute and chronically ill patients. Well-established treatments such as electroconvulsive therapy (ECT) are clinically relevant for treatment-resistant populations, and novel transcranial stimulation methods such as theta-burst stimulation (TBS) and magnetic seizure therapy (MST) have shown promising results. Novel rapid-acting antidepressants, such as ketamine, may also constitute a paradigm shift in treatment optimization for MDD.
The role of dissociation in ketamine’s antidepressant effects
Ketamine produces immediate antidepressant effects and has inspired research into next-generation treatments. Ketamine also has short term dissociative effects, in which individuals report altered consciousness and perceptions of themselves and their environment. However, whether ketamine’s dissociative side effects are necessary for its antidepressant effects remains unclear. This perspective examines the relationship between dissociative effects and acute and longer-lasting antidepressant response to ketamine and other N-methyl-D-aspartate (NMDA) receptor antagonists. Presently, the literature does not support the conclusion that dissociation is necessary for antidepressant response to ketamine. However, further work is needed to explore the relationship between dissociation and antidepressant response at the molecular, biomarker, and psychological levels. Ketamine is associated with rapid antidepressant effects and temporary dissociative experiences, and this review examines whether these dissociative symptoms are necessary for antidepressant efficacy. Although the current literature does not support this relationship, further work is needed to explore possible associations at the molecular, biomarker, and psychological levels.
NMDAR inhibition-independent antidepressant actions of ketamine metabolites
Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR ( N -methyl- d -aspartate receptor) antagonist ( R , S )-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of ( R , S )-ketamine to (2 S ,6 S ;2 R ,6 R )-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2 R ,6 R )-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2 R ,6 R )-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of ( R , S )-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants. The metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and the (2R,6R)-HNK enantiomer lacks ketamine-related side effects but exerts rapid and sustained antidepressant actions in mice; these antidepressant effects are independent of NMDAR inhibition but require AMPAR activity. Antidepressant action of a ketamine metabolite The NMDAR antagonist ketamine has rapid and sustained antidepressant effects; this has prompted a search for alternative NMDAR antagonists that have the same antidepressant properties but lack the undesirable side effects of ketamine. Todd Gould and colleagues now show that the metabolism of ( R , S )-ketamine to (2 S ,6 S ;2 R ,6 R )-hydroxynorketamine (HNK) is essential for its antidepressant activity, and that the (2 R ,6 R )-HNK enantiomer exerts rapid and sustained antidepressant actions in mice. These effects are NMDAR-independent but require AMPAR activation. Importantly, (2 R ,6 R )-HNK lacks the side effects associated with ketamine. These findings suggest new options for the development of novel rapid-acting antidepressants.
Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments
The underlying neurobiological basis of major depressive disorder remains elusive due to the severity, complexity, and heterogeneity of the disorder. While the traditional monoaminergic hypothesis has largely fallen short in its ability to provide a complete picture of major depressive disorder, emerging preclinical and clinical findings suggest that dysfunctional glutamatergic neurotransmission may underlie the pathophysiology of both major depressive disorder and bipolar depression. In particular, recent studies showing that a single intravenous infusion of the glutamatergic modulator ketamine elicits fast-acting, robust, and relatively sustained antidepressant, antisuicidal, and antianhedonic effects in individuals with treatment-resistant depression have prompted tremendous interest in understanding the mechanisms responsible for ketamine's clinical efficacy. These results, coupled with new evidence of the mechanistic processes underlying ketamine's effects, have led to inventive ways of investigating, repurposing, and expanding research into novel glutamate-based therapeutic targets with superior antidepressant effects but devoid of dissociative side effects. Ketamine's targets include noncompetitive N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid throughput potentiation coupled with downstream signaling changes, and N-methyl-D-aspartate receptor targets localized on gamma-aminobutyric acid-ergic interneurons. Here, we review ketamine and other potentially novel glutamate-based treatments for treatment-resistant depression, including N-methyl-D-aspartate receptor antagonists, glycine binding site ligands, metabotropic glutamate receptor modulators, and other glutamatergic modulators. Both the putative mechanisms of action of these agents and clinically relevant studies are described.
Ketamine in neuropsychiatric disorders: an update
The discovery of ketamine as a rapid-acting antidepressant led to a new era in the development of neuropsychiatric therapeutics, one characterized by an antidepressant response that occurred within hours or days rather than weeks or months. Considerable clinical research supports the use of-or further research with-subanesthetic-dose ketamine and its (S)-enantiomer esketamine in multiple neuropsychiatric disorders including depression, bipolar disorder, anxiety spectrum disorders, substance use disorders, and eating disorders, as well as for the management of chronic pain. In addition, ketamine often effectively targets symptom domains associated with multiple disorders, such as anxiety, anhedonia, and suicidal ideation. This manuscript: 1) reviews the literature on the pharmacology and hypothesized mechanisms of subanesthetic-dose ketamine in clinical research; 2) describes similarities and differences in the mechanism of action and antidepressant efficacy between racemic ketamine, its (S) and (R) enantiomers, and its hydroxynorketamine (HNK) metabolite; 3) discusses the day-to-day use of ketamine in the clinical setting; 4) provides an overview of ketamine use in other psychiatric disorders and depression-related comorbidities (e.g., suicidal ideation); and 5) provides insights into the mechanisms of ketamine and therapeutic response gleaned from the study of other novel therapeutics and neuroimaging modalities.
Depression in the Primary Care Setting
Screening for depression and suicidality is important in primary care. Major depressive disorder should be distinguished from bipolar disorder (for which treatment is different). Psychotherapy (for mild depression) and pharmacotherapy are effective therapies.
Ketamine’s mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine’s antidepressant effects?
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30–40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine’s mechanism of action in mood disorders; while many studies have focused on ketamine’s role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system’s abilities to modulate glutamatergic transmission, and our current understanding of ketamine’s anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine’s mechanism of action. This review will summarize ketamine’s anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability
Ketamine, a racemic mixture of (S)-ketamine and (R)-ketamine enantiomers, has been used as an anesthetic, analgesic and more recently, as an antidepressant. However, ketamine has known abuse liability (the tendency of a drug to be used in non-medical situations due to its psychoactive effects), which raises concerns for its therapeutic use. (S)-ketamine was recently approved by the United States’ FDA for treatment-resistant depression. Recent studies showed that (R)-ketamine has greater efficacy than (S)-ketamine in preclinical models of depression, but its clinical antidepressant efficacy has not been established. The behavioral effects of racemic ketamine have been studied extensively in preclinical models predictive of abuse liability in humans (self-administration and conditioned place preference [CPP]). In contrast, the behavioral effects of each enantiomer in these models are unknown. We show here that in the intravenous drug self-administration model, the gold standard procedure to assess potential abuse liability of drugs in humans, rats self-administered (S)-ketamine but not (R)-ketamine. Subanesthetic, antidepressant-like doses of (S)-ketamine, but not of (R)-ketamine, induced locomotor activity (in an opioid receptor-dependent manner), induced psychomotor sensitization, induced CPP in mice, and selectively increased metabolic activity and dopamine tone in medial prefrontal cortex (mPFC) of rats. Pharmacological screening across thousands of human proteins and at biological targets known to interact with ketamine yielded divergent binding and functional enantiomer profiles, including selective mu and kappa opioid receptor activation by (S)-ketamine in mPFC. Our results demonstrate divergence in the pharmacological, functional, and behavioral effects of ketamine enantiomers, and suggest that racemic ketamine’s abuse liability in humans is primarily due to the pharmacological effects of its (S)-enantiomer.
Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects
Ketamine’s mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine’s mechanism of action from studies of healthy controls alone.
Ketamine treatment for depression: a review
This manuscript reviews the clinical evidence regarding single-dose intravenous (IV) administration of the novel glutamatergic modulator racemic ( R,S )-ketamine (hereafter referred to as ketamine) as well as its S -enantiomer, intranasal esketamine, for the treatment of major depressive disorder (MDD). Initial studies found that a single subanesthetic-dose IV ketamine infusion rapidly (within one day) improved depressive symptoms in individuals with MDD and bipolar depression, with antidepressant effects lasting three to seven days. In 2019, esketamine received FDA approval as an adjunctive treatment for treatment-resistant depression (TRD) in adults. Esketamine was approved under a risk evaluation and mitigation strategy (REMS) that requires administration under medical supervision. Both ketamine and esketamine are currently viable treatment options for TRD that offer the possibility of rapid symptom improvement. The manuscript also reviews ketamine’s use in other psychiatric diagnoses—including suicidality, obsessive–compulsive disorder, post-traumatic stress disorder, substance abuse, and social anxiety disorder—and its potential adverse effects. Despite limited data, side effects for antidepressant-dose ketamine—including dissociative symptoms, hypertension, and confusion/agitation—appear to be tolerable and limited to around the time of treatment. Relatively little is known about ketamine’s longer-term effects, including increased risks of abuse and/or dependence. Attempts to prolong ketamine’s effects with combined therapy or a repeat-dose strategy are also reviewed, as are current guidelines for its clinical use. In addition to presenting a novel and valuable treatment option, studying ketamine also has the potential to transform our understanding of the mechanisms underlying mood disorders and the development of novel therapeutics.