Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Zarif, Myassar"
Sort by:
Visual evoked potential latency predicts cognitive function in people with multiple sclerosis
Prior studies have reported an association between visual evoked potentials (VEPs) and cognitive performance in people with multiple sclerosis (PwMS), but the specific mechanisms that account for this relationship remain unclear. We examined the relationship between VEP latency and cognitive performance in a large sample of PwMS, hypothesizing that VEP latency indexes not only visual system functioning but also general neural efficiency. Standardized performance index scores were obtained for the domains of memory, executive function, visual-spatial processing, verbal function, attention, information processing speed, and motor skills, as well as global cognitive performance (NeuroTrax battery). VEP P100 component latency was obtained using a standard checkerboard pattern-reversal paradigm. Prolonged VEP latency was significantly associated with poorer performance in multiple cognitive domains, and with the number of cognitive domains in which performance was ≥ 1 SD below the normative mean. Relationships between VEP latency and cognitive performance were significant for information processing speed, executive function, attention, motor skills, and global cognitive performance after controlling for disease duration, visual acuity, and inter-ocular latency differences. This study provides evidence that VEP latency delays index general neural inefficiency that is associated with cognitive disturbances in PwMS.
Humoral immune response after Ad26.COV2.S vaccination in patients with multiple sclerosis treated with natalizumab
The immunomodulatory effects of disease-modifying therapies for multiple sclerosis might affect the immune response to vaccines for severe acute respiratory syndrome coronavirus 2. We analyzed the severe acute respiratory syndrome coronavirus 2-specific antibody response and lymphocyte profile before and after Ad26.COV2.S (Johnson & Johnson) vaccination in natalizumab-treated patients with multiple sclerosis. There was a 72-fold increase in mean anti-severe acute respiratory syndrome coronavirus 2 spike immunoglobulin G levels 4 weeks after vaccination and a 137-fold increase after 6 months. Other immune signals were within normal ranges. Natalizumab-treated patients with multiple sclerosis had a robust immune response to Ad26.COV2.S vaccine, and other immune signals were not significantly affected.
The moderating roles of self-efficacy and depression in dual-task walking in multiple sclerosis: A test of self-awareness theory
Multiple sclerosis (MS) is a debilitating neurological disease associated with a variety of psychological, cognitive, and motoric symptoms. Walking is among the most important functions compromised by MS. Dual-task walking (DTW), an everyday activity in which people walk and engage in a concurrent, discrete task, has been assessed in MS, but little is known about how it relates to other MS symptoms. Self-awareness theory suggests that DTW may be a function of the interactions among psychological, cognitive, and motor processes. Cognitive testing, self-report assessments for depression and falls self-efficacy (FSE), and walk evaluations [DTW and single-task walk (STW)] were assessed in seventy-three people with MS in a clinical care setting. Specifically, we assessed whether psychological factors (depression and FSE) that alter subjective evaluations regarding one's abilities would moderate the relationships between physical and cognitive abilities and DTW performance. DTW speed is related to diverse physical and cognitive predictors. In support of self-awareness theory, FSE moderated the relationship between STW and DTW speeds such that lower FSE attenuated the strength of the relationship between them. DTW costs - the change in speed normalized by STW speed - did not relate to cognitive and motor predictors. DTW costs did relate to depressive symptoms, and depressive symptoms moderated the effect of information processing on DTW costs. Findings indicate that an interplay of physical ability and psychological factors - like depression and FSE - may enhance understanding of walking performance under complex, real-world, DTW contexts.
Improvement in Cognitive Function as Measured by NeuroTrax in Patients with Relapsing Multiple Sclerosis Treated with Natalizumab: A 2-Year Retrospective Analysis
Background Cognitive impairment affects many patients with multiple sclerosis (MS). NeuroTrax, a computerized cognitive screen that can be administered during routine clinical care, provides a consistent, validated, objective cognitive profile measure with a global cognitive score (GCS) and seven individual domain scores. Natalizumab is an efficacious therapy for relapsing MS, demonstrating reductions in disability worsening and MS disease activity measured by magnetic resonance imaging. Objective The aim of this study was to assess cognitive function as measured by NeuroTrax in MS patients treated with natalizumab for ≥ 2 years. Methods This retrospective observational study included adult MS patients in the United States who received 300 mg intravenous natalizumab every 4 weeks for ≥ 2 years. NeuroTrax data were evaluated at baseline and yearly thereafter. Changes in GCS and the seven individual cognitive domain scores from baseline to after 24 infusions of natalizumab were analyzed. Results In the study population at baseline ( N  = 52), 22 patients (42.3%) had disease duration of 0–5 years; 12 patients (23.1%) were treatment naive. GCS score improved significantly from baseline [mean 95.5, standard deviation (SD) 12.9] to year 2 (mean 98.9, SD 13.2; change from baseline 3.4; p  = 0.003). After 2 years on natalizumab, 17 patients (32.7%) demonstrated clinically significant improvement (increase from baseline > 1 SD) in GCS. Results were similar regardless of whether patients had previously received MS therapy. Conclusions Patients treated with natalizumab demonstrated significant improvement in cognitive function, measured by NeuroTrax GCS, over 2 years of treatment.
Peering further into the mind’s eye: combining visual evoked potential and optical coherence tomography measures enhances insight into the variance in cognitive functioning in multiple sclerosis
Background Spectral Optical Coherence Tomography (OCT) and Visual Evoked Potentials (VEPs) have both emerged as potentially useful biomarkers of cognitive decline in people with multiple sclerosis (PwMS). Their combined use may provide additional predictive value for identifying disease impact, progression, and remyelination capacity above-and-beyond what is captured using either approach alone. Objective We examined the relationship between OCT/VEP measures and cognitive functioning in 205 PwMS. OCT measures included Retinal Nerve Fiber Layer Volume (RNFLV), Papillo-Macular Bundle Volume (PBMV), and Macular Volume (MV). VEP measures included latency of the P100, and inter-ocular latency. Cognitive performance was evaluated across seven separate domains of performance, and for overall cognition, using the NeuroTrax computerized testing battery. Results Both OCT and VEP measures were significantly correlated with cognitive performance across several domains. Linear regression models that controlled for the influence of visual acuity revealed (1) that reduced MV was significantly predictive of poorer visual-spatial functioning, and (2) that delayed VEP latency was significantly predictive of performance in global cognitive functioning and visual-spatial functioning, after controlling for multiple comparisons. Among PwMS with normal visual acuity, PwMS with a combination of both relatively low MV and delayed VEP latency tended to have poorer performance in the domains of global, executive, and visual-spatial functioning compared to PwMS with both high MV and normal VEP latency. Conclusion Approaches that combine the use of OCT and VEP measures can enhance insight into underlying factors that contribute to variance in cognitive functioning in PwMS.
Thalamic atrophy measured by artificial intelligence in a multicentre clinical routine real-world study is associated with disability progression
BackgroundThe thalamus is a key grey matter structure, and sensitive marker of neurodegeneration in multiple sclerosis (MS). Previous reports indicated that thalamic volumetry using artificial intelligence (AI) on clinical-quality T2-fluid-attenuated inversion recovery (FLAIR) images alone is fast and reliable.ObjectiveTo investigate whether thalamic volume (TV) loss, measured longitudinally by AI, is associated with disability progression (DP) in patients with MS, participating in a large multicentre study.MethodsThe DeepGRAI (Deep Grey Rating via Artificial Intelligence) Registry is a multicentre (30 USA sites), longitudinal, observational, retrospective, real-world study of relapsing-remitting (RR) MS patients. Each centre enrolled between 30 and 35 patients. Brain MRI exams acquired at baseline and follow-up on 1.5T or 3T scanners with no prior standardisation were collected. TV measurement was performed on T2-FLAIR using DeepGRAI, and on two dimensional (D)-weighted and 3D T1-weighted images (WI) by using FMRIB’s Integrated Registration and Segmentation Tool software where possible.Results1002 RRMS patients were followed for an average of 2.6 years. Longitudinal TV analysis was more readily available on T2-FLAIR (96.1%), compared with 2D-T1-WI (61.8%) or 3D-T1-WI (33.2%). Over the follow-up, DeepGRAI TV loss was significantly higher in patients with DP, compared with those with disability improvement (DI) or disease stability (−1.35% in DP, −0.87% in DI and −0.57% in Stable, p=0.045, Bonferroni-adjusted, age-adjusted and follow-up time-adjusted analysis of covariance). In a regression model including MRI scanner change, age, sex, disease duration and follow-up time, DP was associated with DeepGRAI TV loss (p=0.022).ConclusionsThalamic atrophy measured by AI in a multicentre clinical routine real-world setting is associated with DP over mid-term follow-up.
Correction to: Improvement in Cognitive Function as Measured by NeuroTrax in Patients with Relapsing Multiple Sclerosis Treated with Natalizumab: A 2-Year Retrospective Analysis
An Online First version of this article was made available online at http://link.springer.com/journal/40263/onlineFirst/page/1 on 24 August 2018. An error was subsequently identified in the article, and the following correction should be noted: