Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Zarnetske, Phoebe"
Sort by:
Climate Change and the Past, Present, and Future of Biotic Interactions
Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species' relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.
Biotic Multipliers of Climate Change
A focus on species interactions may improve predictions of the effects of climate change on ecosystems. Many species face uncertain fates under climate change. Some will persist by shifting their range or adapting to local conditions, whereas others will be lost to extinction. Efforts to lessen the impacts of climate change on biodiversity depend on accurate forecasts. Most studies aiming to identify likely winners and losers consider species one at a time with a “climate envelope” approach that correlates species' occurrences with climatic and environmental variables. Using this method, researchers have predicted that by 2050, 15 to 37% of species will be faced with extinction ( 1 ). But which species are most likely to be under threat? And how will their loss affect the broader ecological community?
Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth
As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth’s climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity.
Volatile Organic Compound Emissions From Solidago altissima Under Experimental Warming and Drought
Plant volatile organic compound (VOC) emissions are important mediators for plant interactions with biotic and abiotic factors in the environment. Changes in VOC emissions can be caused by factors associated with climate change, such as warming and drought. However, we currently lack an understanding of how warming and drought affect plants' emissions in their natural environment, let alone how these climate factors may interact to synergistically affect emissions. To fill these knowledge gaps, we measured VOC emissions from tall goldenrod ( Solidago altissima ) in an early successional plant community under four climate treatments: ambient control, warmed, drought, and warmed + drought. Treatments were applied in situ using open‐top chambers for warming and rainout shelters for drought. Drought treatments (drought and warmed + drought) have a stronger effect on VOC emissions compared to nondrought treatments (ambient and warmed). Furthermore, while the overall abundance of VOCs did not differ between treatments, there were specific compounds associated with one or more climate treatments. For example, diisopropyl adipate was more abundant in the drought and warmed + drought treatments. Our study shows that in goldenrod, drought may have a stronger effect than warming on VOC emissions, but moreover, that specific compounds are especially sensitive to certain climate treatments. However, additional experimentation is necessary to validate the functions associated with the affected compounds. These findings demonstrate that climate change alters chemical emissions, which in turn could have implications for ecosystem functioning via changes in plant–plant communication, plant–insect interactions, and overall plant fitness.
Metabolic asymmetry and the global diversity of marine predators
Generally, biodiversity is higher in the tropics than at the poles. This pattern is present across taxa as diverse as plants and insects. Marine mammals and birds buck this trend, however, with more species and more individuals occurring at the poles than at the equator. Grady et al. asked why this is (see the Perspective by Pyenson). They analyzed a comprehensive dataset of nearly 1000 species of shark, fish, reptiles, mammals, and birds. They found that predation on ectothermic (“cold-blooded”) prey is easier where waters are colder, which generates a larger resource base for large endothermic (“warm-blooded”) predators in polar regions. Science , this issue p. eaat4220 ; see also p. 338 Marine mammal and bird diversity is highest in polar regions, owing to the availability of cold, slow prey. Species richness of marine mammals and birds is highest in cold, temperate seas—a conspicuous exception to the general latitudinal gradient of decreasing diversity from the tropics to the poles. We compiled a comprehensive dataset for 998 species of sharks, fish, reptiles, mammals, and birds to identify and quantify inverse latitudinal gradients in diversity, and derived a theory to explain these patterns. We found that richness, phylogenetic diversity, and abundance of marine predators diverge systematically with thermoregulatory strategy and water temperature, reflecting metabolic differences between endotherms and ectotherms that drive trophic and competitive interactions. Spatial patterns of foraging support theoretical predictions, with total prey consumption by mammals increasing by a factor of 80 from the equator to the poles after controlling for productivity.
Foraging strategy mediates ectotherm predator–prey responses to climate warming
Climate warming and species traits interact to influence predator performance, including individual feeding and growth rates. However, the effects of an important trait—predator foraging strategy—are largely unknown. We investigated the interactions between predator foraging strategy and temperature on two ectotherm predators: an active predator, the backswimmer Notonecta undulata, and a sit-and-wait predator, the damselfly Enallagma annexum. In a series of predator–prey experiments across a temperature gradient, we measured predator feeding rates on an active prey species, zooplankton Daphnia pulex, predator growth rates, and mechanisms that influence predator feeding: body speed of predators and prey (here measured as swimming speed), prey encounter rates, capture success, attack rates, and handling time. Overall, warming led to increased feeding rates for both predators through changes to each component of the predator’s functional response. We found that prey swimming speed strongly increased with temperature. The active predator’s swimming speed also increased with temperature, and together, the increase in predator and prey swimming speed resulted in twofold higher prey encounter rates for the active predator at warmer temperatures. By contrast, prey encounter rates of the sit-and-wait predator increased fourfold with rising temperatures as a result of increased prey swimming speed. Concurrently, increased prey swimming speed was associated with a decline in the active predator’s capture success at high temperatures, whereas the sit-and-wait predator’s capture success slightly increased with temperature. We provide some of the first evidence that foraging traits mediate the indirect effects of warming on predator performance. Understanding how traits influence species’ responses to warming could clarify how climate change will affect entire functional groups of species.
Towards connecting biodiversity and geodiversity across scales with satellite remote sensing
Issue Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity–geodiversity relationships across scales. Evidence We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. Conclusion With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity–geodiversity relationships across scales and guide the conservation of nature.
Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients
Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m 2 ) to plot (400 m 2 ) and regional (5−214 km 2 ) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity–stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes. Analysing >6,000 plant species from plots across the US National Ecological Observatory Network (NEON), the authors show that plant diversity consistently stabilizes community abundance across spatial scales and broad ecoclimatic domains, with the strength of the stabilizing effect increasing with scale.
The influence of sample size and sampling design on estimating population‐level intra specific trait variation (ITV) along environmental gradients
Understanding the relationship between intraspecific trait variability (ITV) and its biotic and abiotic drivers is crucial for advancing population and community ecology. Despite its importance, there is a lack of guidance on how to effectively sample ITV and reduce bias in the resulting inferences. In this study, we explored how sample size affects the estimation of population‐level ITV, and how the distribution of sample sizes along an environmental gradient (i.e., sampling design) impacts the probabilities of committing Type I and II errors. We investigated Type I and II error probabilities using four simulated scenarios which varied sampling design and the strength of the ITV‐environment relationships. We also applied simulation scenarios to empirical data on populations of the small mammal, Peromyscus maniculatus across gradients of latitude and temperature at sites in the National Ecological Observatory Network (NEON) in the continental United States. We found that larger sample sizes reduce error rates in the estimation of population‐level ITV for both in silico and Peromyscus maniculatus populations. Furthermore, the influence of sample size on detecting ITV‐environment relationships depends on how sample sizes and population‐level ITV are distributed along environmental gradients. High correlations between sample size and the environment result in greater Type I error, while weak ITV–environmental gradient relationships showed high Type II error probabilities. Therefore, having large sample sizes that are even across populations is the most robust sampling design for studying ITV‐environment relationships. These findings shed light on the complex interplay among sample size, sampling design, ITV, and environmental gradients. Linking organismal traits to environmental gradients reveals mechanisms underlying patterns of biodiversity, from individual adaptations to ecosystem‐scale dynamics. This study provides much‐needed guidance for optimizing sampling strategies to improve the accuracy of population‐level characterization of intraspecific trait variability (ITV) and estimation of ITV‐environment relationships, thereby significantly advancing ecological understanding.
Searching for Biotic Multipliers of Climate Change
As climates change, biologists need to prioritize which species to understand, predict, and protect. One way is to identify key species that are both sensitive to climate change and that disproportionately affect communities and ecosystems. These “biotic multipliers” provide efficient targets for research and conservation. Here, we propose eight mechanistic hypotheses related to impact and sensitivity that suggest that top consumers might often act as biotic multipliers of climate change. For impact, top consumers often affect communities and ecosystems through strong top-down effects. For sensitivity, metabolic theory and data suggest that photosynthesis and respiration differ in temperature responses, potentially increasing the sensitivity of consumers relative to plants. Larger-bodied organisms are typically more thermally sensitive than smaller ones, suggesting how large top consumers might be more sensitive than their smaller prey. In addition, traits related to predation are more sensitive than defensive traits to temperature. Top consumers might also be more sensitive because they often lag behind prey in phenological responses. The combination of low population sizes and demographic traits of top consumers could make them more sensitive to disturbances like climate change, which could slow their recovery. As top consumers are positioned at the top of the food chain, many small effects can accumulate from other trophic levels to affect top consumers. Finally, top consumers also often disperse more frequently and farther than prey, potentially leading to greater sensitivity to climate-induced changes in ranges and subsequent impacts on invaded communities. Overall, we expect that large, ectothermic top consumers and mobile predators might frequently be biotic multipliers of climate change. However, this prediction depends on the particular features of species, habitats, and ecosystems. In specific cases, herbivores, plants, or pathogens might be more sensitive than top consumers or have greater community impacts. To predict biotic multipliers, we need to compare sensitivities and impacts across trophic groups in a broader range of ecosystems as well as perform experiments that uncouple proposed mechanisms. Overall, the biotic multiplier concept offers an alternative prioritization scheme for research and conservation that includes impacts on communities and ecosystems.