Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Zeb, Zunir"
Sort by:
Analysis of Pneumonia Model via Efficient Computing Techniques
Pneumonia is a highly transmissible disease in children. According to the World Health Organization (WHO), the most affected regions include south Asia and sub-Saharan Africa. Worldwide, 15% of pediatric deaths can be attributed to pneumonia. Computing techniques have a significant role in science, engineering, and many other fields. In this study, we focused on the efficiency of numerical techniques via computer programs. We studied the dynamics of the pneumonia-like infections of epidemic models using numerical techniques. We discuss two types of analysis: dynamical and numerical. The dynamical analysis included positivity, boundedness, local stability, reproduction number, and equilibria of the model. We also discuss well-known computing techniques including Euler, Runge Kutta, and non-standard finite difference (NSFD) for the model. The non-standard finite difference (NSFD) technique shows convergence to the true equilibrium points of the model for any time step size. However, Euler and Runge Kutta do not work well over large time intervals. Computing techniques are the suitable tool for crosschecking the theoretical analysis of the model.
Development of PCCNN-Based Network Intrusion Detection System for EDGE Computing
Intrusion Detection System (IDS) plays a crucial role in detecting and identifying the DoS and DDoS type of attacks on IoT devices. However, anomaly-based techniques do not provide acceptable accuracy for efficacious intrusion detection. Also, we found many difficulty levels when applying IDS to IoT devices for identifying attempted attacks. Given this background, we designed a solution to detect intrusions using the Convolutional Neural Network (CNN) for Enhanced Data rates for GSM Evolution (EDGE) Computing. We created two separate categories to handle the attack and non-attack events in the system. The findings of this study indicate that this approach was significantly effective. We attempted both multiclass and binary classification. In the case of binary, we clustered all malicious traffic data in a single class. Also, we developed 13 layers of Sequential 1-D CNN for IDS detection and assessed them on the public dataset NSL-KDD. Principal Component Analysis (PCA) was implemented to decrease the size of the feature vector based on feature extraction and engineering. The approach proposed in the current investigation obtained accuracies of 99.34% and 99.13% for binary and multiclass classification, respectively, for the NSL-KDD dataset. The experimental outcomes showed that the proposed Principal Component-based Convolution Neural Network (PCCNN) approach achieved greater precision based on deep learning and has potential use in modern intrusion detection for IoT systems.