Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Zeb, Zunir"
Sort by:
Analysis of Pneumonia Model via Efficient Computing Techniques
by
Shoaib Arif, Muhammad
,
Shahzadi, Kiran
,
Ul Zaman, Badar
in
Dynamic stability
,
Finite difference method
,
Mathematical analysis
2022
Pneumonia is a highly transmissible disease in children. According to the World Health Organization (WHO), the most affected regions include south Asia and sub-Saharan Africa. Worldwide, 15% of pediatric deaths can be attributed to pneumonia. Computing techniques have a significant role in science, engineering, and many other fields. In this study, we focused on the efficiency of numerical techniques via computer programs. We studied the dynamics of the pneumonia-like infections of epidemic models using numerical techniques. We discuss two types of analysis: dynamical and numerical. The dynamical analysis included positivity, boundedness, local stability, reproduction number, and equilibria of the model. We also discuss well-known computing techniques including Euler, Runge Kutta, and non-standard finite difference (NSFD) for the model. The non-standard finite difference (NSFD) technique shows convergence to the true equilibrium points of the model for any time step size. However, Euler and Runge Kutta do not work well over large time intervals. Computing techniques are the suitable tool for crosschecking the theoretical analysis of the model.
Journal Article
Development of PCCNN-Based Network Intrusion Detection System for EDGE Computing
by
Shoaib Arif, Muhammad
,
Shahzadi, Kiran
,
Ul Zaman, Badar
in
Artificial neural networks
,
Cellular communication
,
Classification
2022
Intrusion Detection System (IDS) plays a crucial role in detecting and identifying the DoS and DDoS type of attacks on IoT devices. However, anomaly-based techniques do not provide acceptable accuracy for efficacious intrusion detection. Also, we found many difficulty levels when applying IDS to IoT devices for identifying attempted attacks. Given this background, we designed a solution to detect intrusions using the Convolutional Neural Network (CNN) for Enhanced Data rates for GSM Evolution (EDGE) Computing. We created two separate categories to handle the attack and non-attack events in the system. The findings of this study indicate that this approach was significantly effective. We attempted both multiclass and binary classification. In the case of binary, we clustered all malicious traffic data in a single class. Also, we developed 13 layers of Sequential 1-D CNN for IDS detection and assessed them on the public dataset NSL-KDD. Principal Component Analysis (PCA) was implemented to decrease the size of the feature vector based on feature extraction and engineering. The approach proposed in the current investigation obtained accuracies of 99.34% and 99.13% for binary and multiclass classification, respectively, for the NSL-KDD dataset. The experimental outcomes showed that the proposed Principal Component-based Convolution Neural Network (PCCNN) approach achieved greater precision based on deep learning and has potential use in modern intrusion detection for IoT systems.
Journal Article