Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Zeberg, Hugo"
Sort by:
A genomic region associated with protection against severe COVID-19 is inherited from Neandertals
It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is inherited from Neandertals. New, larger genetic association studies now allow additional genetic risk factors to be discovered. Using data from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region on chromosome 12 associated with requiring intensive carewhen infectedwith the virus is inherited from Neandertals. This region encodes proteins that activate enzymes that are important during infections with RNA viruses. In contrast to the previously described Neandertal haplotype that increases the risk for severe COVID-19, this Neandertal haplotype is protective against severe disease. It also differs from the risk haplotype in that it has a more moderate effect and occurs at substantial frequencies in all regions of the world outside Africa. Among ancient human genomes in western Eurasia, the frequency of the protective Neandertal haplotype may have increased between 20,000 and 10,000 y ago and again during the past 1,000 y.
The Neandertal Progesterone Receptor
The hormone progesterone is important for preparing the uterine lining for egg implantation and for maintaining the early stages of pregnancy. The gene encoding the progesterone receptor (PGR) carries introgressed Neandertal haplotypes with two missense substitutions and a mobile Alu element. These Neandertal gene variants have reached nearly 20% frequency in non-Africans and have been associated with preterm birth. Here, we show that one of the missense substitutions appears fixed in Neandertals, while the other substitution as well as the Alu insertion were polymorphic among Neandertals. We show that two Neandertal haplotypes carrying the PGR gene entered the modern human population and that present-day carriers of the Neandertal haplotypes express higher levels of the receptor. In a cohort of present-day Britons, these carriers have more siblings, fewer miscarriages, and less bleeding during early pregnancy suggesting that the Neandertal progesterone receptor alleles promote fertility. This may explain their high frequency in modern human populations.
Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19
The OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1 , which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity. Multi-ancestry fine-mapping of the OAS1/2/3 region shows that a splice site variant in OAS1 is likely responsible for the association of this locus with the risk of severe COVID-19.
The clinically relevant CYP2C83 and CYP2C92 haplotype is inherited from Neandertals
Genetic variation in genes encoding cytochrome P450 enzymes influences the metabolism of drugs and endogenous compounds. The locus containing the cytochrome genes CYP2C8 and CYP2C9 on chromosome 10 exhibits linkage disequilibrium between the CYP2C8*3 and CYP2C9*2 alleles, forming a haplotype of ~300 kilobases. This haplotype is associated with altered metabolism of several drugs, most notably reduced metabolism of warfarin and phenytoin, leading to toxicity at otherwise therapeutic doses. Here we show that this haplotype is inherited from Neandertals.
Functional dissection of two amino acid substitutions unique to the human FOXP2 protein
The transcription factor forkhead box P2 (FOXP2) is involved in the development of language and speech in humans. Two amino acid substitutions (T303N, N325S) occurred in the human FOXP2 after the divergence from the chimpanzee lineage. It has previously been shown that when they are introduced into the FOXP2 protein of mice they alter striatal synaptic plasticity by increasing long-term depression in medium spiny neurons. Here we introduce each of these amino acid substitutions individually into mice and analyze their effects in the striatum. We find that long-term depression in medium spiny neurons is increased in mice carrying only the T303N substitution to the same extent as in mice carrying both amino acid substitutions. In contrast, the N325S substitution has no discernable effects.
Longitudinal variability in mortality predicts COVID-19 deaths
Within Europe, death rates due to COVID-19 vary greatly, with some countries being severely hit while others to date are almost unaffected. This has created a heated debate in particular regarding how effective the different measures applied by the governments are in limiting the spread of the disease and ultimately deaths. It would be of considerable interest to pinpoint the factors that determine a country’s susceptibility to a pandemic such as COVID-19. Here we present data demonstrating that mortality due to COVID-19 in a given country could have been predicted to some extent even before the pandemic hit Europe, simply by looking at longitudinal variability of death rates in the years preceding the current outbreak. The variability in death rates during the winter influenza seasons of 2015–2019 correlates to excess mortality in 2020 during the COVID-19 outbreak (Spearman’s ρ = 0.68, 95 % CI = 0.40–0.84, p < 0.001). In contrast, there was no correlation with age, population density, latitude, GNP, governmental health spending, number of intensive care beds, degree of urbanization, or rates of influenza vaccination. These data suggest an intrinsic susceptibility in certain countries to excess mortality associated with viral respiratory diseases including COVID-19.
Muscle AMP deaminase activity was lower in Neandertals than in modern humans
The enzyme AMPD1 is expressed in skeletal muscle and is involved in ATP production. All available Neandertal genomes carry a lysine-to-isoleucine substitution at position 287 in AMPD1. This variant, which occurs at an allele frequency of 0–8% outside Africa, was introduced to modern humans by gene flow from Neandertals. Here, we show that the catalytic activity of the purified Neandertal AMPD1 is ~25% lower than the ancestral enzyme, and when introduced in mice, it reduces AMPD activity in muscle extracts by ~80%. Among present-day Europeans, another AMPD1 variant encoding a stop codon occurs at an allele frequency of 9–14%. Individuals heterozygous for this variant are less likely to be top-performing athletes in various sports, but otherwise reduced AMPD1 activity is well tolerated in present-day humans. While being conserved among vertebrates, AMPD1 seems to have become less functionally important among Neandertals and modern humans. Neandertal genomes carry a variant of AMPD1 with a lysine-to-isoleucine substitution at position 287. Here, the authors show that this variant has reduced activity in muscle, which could have effects on athletic performance.
Three-dimensional visualisation of authentic cases in anatomy learning – An educational design study
Background Many studies have investigated the value of three-dimensional (3D) images in learning anatomy. However, there is a lack of knowledge about students learning processes using technology and 3D images. To understand how to facilitate and support the learning of anatomy, there is a need to know more about the student perspectives on how they can use and benefit from 3D images. Methods This study used designed educational sessions informed by Educational Design Research to investigate the role of technology-enhanced 3D images in students’ anatomy learning. Twenty-four students representing different health professions and multiple study levels, and one tutor, participated in the study. A visualisation table was used to display the images of real patient cases related to disorders associated with the abdomen and the brain. Students were asked to explore the images on their own and audio/video capture was used to record their words and actions. Directly following the session, students were interviewed about their perceptions and different ways of learning and studying anatomy. The tutor was interviewed about his reflections on the session and his role as a facilitator on two occasions. Content analysis was used in its manifest and latent form in the data analysis. Result Two main categories describing the students’ and tutor’s accounts of learning using the visualisation table were identified: 1. Interpreting 3D images and 2. Educational sessions using visualisation tables. Each category had signifying themes representing interpretations of the latent meaning of the students' and tutor's accounts. These were: Realism and complexity; Processes of discernment; References to previous knowledge; Exploring on one's own is valuable; Context enhances learning experiences; Combinations of learning resources are needed and Working together affects the dynamics. Conclusions This study identifies several important factors to be considered when designing effective and rewarding educational sessions using a visualization table and 3D images in anatomy education. Visualisation of authentic images has the potential to create interest and meaningfulness in studying anatomy. Students need time to actively explore images but also get tutor guidance to understand. Also, a combination of different resources comprises a more helpful whole than a single learning resource.
The major genetic risk factor for severe COVID-19 is associated with protection against HIV
There are genetic risk factors that influence the outcome of COVID-19 [COVID-19 Host Genetics Initiative, Nature 600, 472–477 (2021)]. The major genetic risk factor for severe COIVD-19 resides on chromosome 3 and is inherited from Neandertals [H. Zeberg, S. Pääbo, Nature 587, 610–612 (2020)]. The risk-associated DNA segment modulates the expression of several chemokine receptors, among them CCR5, a coreceptor for HIV which is down-regulated in carriers of the COVID-19 risk haplotype. Here I show that carriers of the risk variant have an ∼27% lower risk of HIV infection.