Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Zeevaart, Jan Rijn"
Sort by:
Iron from nanostructured ferric phosphate: absorption and biodistribution in mice and bioavailability in iron deficient anemic women
Food fortification with iron nanoparticles (NPs) could help prevent iron deficiency anemia, but the absorption pathway and biodistribution of iron-NPs and their bioavailability in humans is unclear. Dietary non-heme iron is physiologically absorbed via the divalent metal transporter-1 (DMT1) pathway. Using radio- iron isotope labelling in mice with a partial knockdown of intestine-specific DMT1, we assessed oral absorption and tissue biodistribution of nanostructured ferric phosphate (FePO 4 -NP; specific surface area [SSA] 98 m 2 g -1 ) compared to to ferrous sulfate (FeSO 4 ), the reference compound. We show that absorption of iron from FePO 4 -NP appears to be largely DMT1 dependent and that its biodistribution after absorption is similar to that from FeSO 4 , without abnormal deposition of iron in the reticuloendothelial system. Furthermore, we demonstrate high bioavailability from iron NPs in iron deficient anemic women in a randomized, cross-over study using stable-isotope labelling: absorption and subsequent erythrocyte iron utilization from two 57 Fe-labeled FePO 4 -NP with SSAs of 98 m 2 g −1 and 188 m 2 g −1 was 2.8-fold and 5.4-fold higher than from bulk FePO 4 with an SSA of 25 m 2 g −1 ( P  < 0.001) when added to a rice and vegetable meal consumed by iron deficient anemic women. The FePO 4 -NP 188 m 2 g -1 achieved 72% relative bioavailability compared to FeSO 4 . These data suggest FePO 4 -NPs may be useful for nutritional applications.
Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer
PurposeThe prostate-specific membrane antigen (PSMA) has emerged as an interesting target for radionuclide therapy of metastasized castration-resistant prostate cancer (mCRPC). The aim of this study was to investigate 161Tb (T1/2 = 6.89 days; Eβ͞av = 154 keV) in combination with PSMA-617 as a potentially more effective therapeutic alternative to 177Lu-PSMA-617, due to the abundant co-emission of conversion and Auger electrons, resulting in an improved absorbed dose profile.Methods161Tb was used for the radiolabeling of PSMA-617 at high specific activities up to 100 MBq/nmol. 161Tb-PSMA-617 was tested in vitro and in tumor-bearing mice to confirm equal properties, as previously determined for 177Lu-PSMA-617. The effects of 161Tb-PSMA-617 and 177Lu-PSMA-617 on cell viability (MTT assay) and survival (clonogenic assay) were compared in vitro using PSMA-positive PC-3 PIP tumor cells. 161Tb-PSMA-617 was further investigated in therapy studies using PC-3 PIP tumor-bearing mice.Results161Tb-PSMA-617 and 177Lu-PSMA-617 displayed equal in-vitro properties and tissue distribution profiles in tumor-bearing mice. The viability and survival of PC-3 PIP tumor cells were more reduced when exposed to 161Tb-PSMA-617 as compared to the effect obtained with the same activities of 177Lu-PSMA-617 over the whole investigated concentration range. Treatment of mice with 161Tb-PSMA-617 (5.0 MBq/mouse and 10 MBq/mouse, respectively) resulted in an activity-dependent increase of the median survival (36 vs 65 days) compared to untreated control animals (19 days). Therapy studies to compare the effects of 161Tb-PSMA-617 and 177Lu-PSMA-617 indicated the anticipated superiority of 161Tb over 177Lu.Conclusion161Tb-PSMA-617 showed superior in-vitro and in-vivo results as compared to 177Lu-PSMA-617, confirming theoretical dose calculations that indicate an additive therapeutic effect of conversion and Auger electrons in the case of 161Tb. These data warrant more preclinical research for in-depth investigations of the proposed concept, and present a basis for future clinical translation of 161Tb-PSMA-617 for the treatment of mCRPC.
Molecular Imaging of a Zirconium-89 Labeled Antibody Targeting Plasmodium falciparum–Infected Human Erythrocytes
PurposeNuclear imaging is an important preclinical research tool to study infectious diseases in vivo and could be extended to investigate complex aspects of malaria infections. As such, we report for the first time successful radiolabeling of a novel antibody specific to Plasmodium-infected erythrocytes (IIIB6), its in vitro assessment and molecular imaging in nude mice.ProceduresIn vitro confocal microscopy was used to determine the stage-specificity of Plasmodium-infected erythrocytes recognised by IIIB6. To enable micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging, IIIB6 was conjugated to Bz-DFO-NCS and subsequently radiolabeled with zirconium-89. Healthy nude mice were injected with [89Zr]IIIB6, and pharmacokinetics and organ uptake were monitored over 24 h. This was followed by post-mortem animal dissection to determine the biodistribution of [89Zr]IIIB6.ResultsIIIB6 recognised all the relevant stages of Plasmodium falciparum-infected erythrocytes (trophozoites, schizonts and gametocytes) that are responsible for severe malaria pathology. [89Zr]IIIB6-radiolabeling yields were efficient at 84–89 %. Blood pool imaging analysis indicated a pharmacological half-life of 9.6 ± 2.5 h for [89Zr]IIIB6. The highest standard uptake values were determined at 2–6 h in the liver followed by the spleen, kidneys, heart, stomach and lung, respectively. Minimal activity was present in muscle and bone tissues.ConclusionIn vitro characterization of IIIB6 and pharmacokinetic characterization of [89Zr]IIIB6 revealed that this antibody has potential for future use in Plasmodium-infected mouse models to study malaria in a preclinical in vivo setting with PET/CT imaging.
Antimicrobial Peptides: Their Role as Infection-Selective Tracers for Molecular Imaging
Antimicrobial peptides (AMPs) are a heterogeneous class of compounds found in a variety of organisms including humans and, so far, hundreds of these structures have been isolated and characterised. They can be described as natural microbicide, selectively cytotoxic to bacteria, whilst showing minimal cytotoxicity towards the mammalian cells of the host organism. They act by their relatively strong electrostatic attraction to the negatively charged bacterial cells and a relatively weak interaction to the eukaryote host cells. The ability of these peptides to accumulate at sites of infection combined with the minimal host’s cytotoxicity motivated for this review to highlight the role and the usefulness of AMPs for PET with emphasis on their mechanism of action and the different interactions with the bacterial cell. These details are key information for their selective properties. We also describe the strategy, design, and utilization of these peptides as potential radiopharmaceuticals as their combination with nuclear medicine modalities such as SPECT or PET would allow noninvasive whole-body examination for detection of occult infection causing, for example, fever of unknown origin.
Precise activity measurements of medical radionuclides using an ionization chamber: a case study with Terbium-161
Background161Tb draws an increasing interest in nuclear medicine for therapeutic applications. More than 99% of the emitted gamma and X-rays of 161Tb have an energy below 100 keV. Consequently, precise activity measurement of 161Tb becomes inaccurate with radionuclide dose calibrators when using inappropriate containers or calibration factors to account for the attenuation of this low energy radiation. To evaluate the ionization chamber response, the sample activity must be well known. This can be performed using standards traceable to the Système International de Référence, which is briefly described as well as the method to standardize the radionuclides.MethodsIn this study, the response of an ionization chamber using different container types and volumes was assessed using 161Tb. The containers were filled with a standardized activity solution of 161Tb and measured with a dedicated ionization chamber, providing an accurate response. The results were compared with standardized solutions of high-energy gamma-emitting radionuclides such as 137Cs, 60Co, 133Ba and 57Co.ResultsFor the glass vial type with an irregular glass thickness, the 161Tb measurements gave a deviation of 4.5% between two vials of the same type. The other glass vial types have a much more regular thickness and no discrepancy was observed in the response of the ionization chamber for these type of vials. Measurements with a plastic Eppendorf tube showed stable response, with greater sensitivity than the glass vials.ConclusionIonization chamber measurements for low-energy gamma emitters (< 100 keV), show deviation depending on the container type used. Therefore, a careful selection of the container type must be done for activity assessment of 161Tb using radionuclide dose calibrators. In conclusion, it was highlighted that appropriate calibration factors must be used for each container geometry when measuring 161Tb and, more generally, for low-energy gamma emitters.
Dual radiolabeling as a technique to track nanocarriers: the case of gold nanoparticles
Gold nanoparticles (AuNPs) have shown great potential for use in nanomedicine and nanotechnologies due to their ease of synthesis and functionalization. However, their apparent biocompatibility and biodistribution is still a matter of intense debate due to the lack of clear safety data. To investigate the biodistribution of AuNPs, monodisperse 14-nm dual-radiolabeled [14C]citrate-coated [198Au]AuNPs were synthesized and their physico-chemical characteristics compared to those of non-radiolabeled AuNPs synthesized by the same method. The dual-radiolabeled AuNPs were administered to rats by oral or intravenous routes. After 24 h, the amounts of Au core and citrate surface coating were quantified using gamma spectroscopy for 198Au and liquid scintillation for the 14C. The Au core and citrate surface coating had different biodistribution profiles in the organs/tissues analyzed, and no oral absorption was observed. We conclude that the different components of the AuNPs system, in this case the Au core and citrate surface coating, did not remain intact, resulting in the different distribution profiles observed. A better understanding of the biodistribution profiles of other surface attachments or cargo of AuNPs in relation to the Au core is required to successfully use AuNPs as drug delivery vehicles
Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms
PurposeThe β¯-emitting terbium-161 also emits conversion and Auger electrons, which are believed to be effective in killing single cancer cells. Terbium-161 was applied with somatostatin receptor (SSTR) agonists that localize in the cytoplasm (DOTATOC) and cellular nucleus (DOTATOC-NLS) or with a SSTR antagonist that localizes at the cell membrane (DOTA-LM3). The aim was to identify the most favorable peptide/terbium-161 combination for the treatment of neuroendocrine neoplasms (NENs).MethodsThe capability of the 161Tb- and 177Lu-labeled somatostatin (SST) analogues to reduce viability and survival of SSTR-positive AR42J tumor cells was investigated in vitro. The radiopeptides’ tissue distribution profiles were assessed in tumor-bearing mice. The efficacy of terbium-161 compared to lutetium-177 was investigated in therapy studies in mice using DOTATOC or DOTA-LM3, respectively.ResultsIn vitro, [161Tb]Tb-DOTA-LM3 was 102-fold more potent than [177Lu]Lu-DOTA-LM3; however, 161Tb-labeled DOTATOC and DOTATOC-NLS were only 4- to fivefold more effective inhibiting tumor cell viability than their 177Lu-labeled counterparts. This result was confirmed in vivo and demonstrated that [161Tb]Tb-DOTA-LM3 was significantly more effective in delaying tumor growth than [177Lu]Lu-DOTA-LM3, thereby, prolonging survival of the mice. A therapeutic advantage of terbium-161 over lutetium-177 was also manifest when applied with DOTATOC. Since the nuclear localizing sequence (NLS) compromised the in vivo tissue distribution of DOTATOC-NLS, it was not used for therapy.ConclusionThe use of membrane-localizing DOTA-LM3 was beneficial and profited from the short-ranged electrons emitted by terbium-161. Based on these preclinical data, [161Tb]Tb-DOTA-LM3 may outperform the clinically employed [177Lu]Lu-DOTATOC for the treatment of patients with NENs.
Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents
IntroductionNon-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited.Methods and ScopeThis review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009–2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn’s disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures.ConclusionClinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible.
Bioaccumulation and Subchronic Toxicity of 14 nm Gold Nanoparticles in Rats
Colloidal suspensions of 14 nm gold nanoparticles (AuNPs) were repeatedly administered intravenously at three dose levels (0.9, 9 and 90 µg) to male Sprague Dawley rats weekly for 7 weeks, followed by a 14-day washout period. After sacrificing, the amount of gold was quantified in the liver, lungs, spleen, skeleton and carcass using neutron activation analysis (NAA). During the study, pre- and post (24 h) administration blood samples were collected from both the test and control groups, the latter which received an equal injection volume of normal saline. General health indicators were monitored together with markers of kidney and liver damage for acute and subchronic toxicity assessment. Histopathological assessments were done on the heart, kidneys, liver, lungs and spleen to assess any morphological changes as a result of the exposure to AuNPs. The mass measurements of all the groups showed a steady increase with no signs of overt toxicity. The liver had the highest amount of gold (µg) per gram of tissue after 56 days followed by the spleen, lungs, skeleton and carcass. Markers of kidney and liver damage showed similar trends between the pre and post samples within each group and across groups. The histopathological examination also showed no hepatotoxicity and nephrotoxicity. There was accumulation of Au in tissues after repeated dosing, albeit with no observable overt toxicity, kidney or liver damage.