Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
160
result(s) for
"Zeng, Wenxin"
Sort by:
Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery
2022
Microneedles offer a convenient transdermal delivery route with potential for long term sustained release of drugs. However current microneedle technologies may not have the mechanical properties for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging to realize microneedle arrays with large size and high flexibility. There is also an inherent upper limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we present a new class of polymeric porous microneedles made from biocompatible and photo-curable resin that address these challenges. The microneedles are unique in their ability to load solid drug formulation in concentrated form. We demonstrate the loading and release of solid formulation of anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also demonstrates realization of large area (6 × 20 cm
2
) flexible and stretchable microneedle patches capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine model supplemented through rigorous compression tests to ensure the robustness and rigidity of the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin model. Results show promise for large area transdermal delivery of solid drug formulations using these porous microneedles.
Journal Article
Diurnal Variations of Rainfall in Surface and Satellite Observations at the Monsoon Coast (South China)
by
Chen, Guixing
,
Zeng, Wenxin
,
Pan, He
in
Annual variations
,
Atmospheric precipitations
,
Atmospheric sciences
2018
The complex features of rainfall diurnal cycles at the south China coast are examined using hourly rain gauge data and satellite products (CMORPH and TRMM 3B42) during 1998–2014. It is shown that morning rainfall is pronounced near the coasts and windward mountains, with high rainfall in the summer monsoon season, while afternoon rainfall is dominant on land, and nocturnal rainfall occurs at northern inland sites. Both satellite products report less morning rainfall and more afternoon rainfall than the rain gauge data, and they also miss the midnight rainfall minimum. These errors are mainly attributable to an underestimation of morning moderate and intense rains at coasts and an overestimation of afternoon–evening light rains on land. With a correction of the systematic bias, satellite products faithfully resolve the spatial patterns of normalized rainfall diurnal cycles related to land–sea contrast and terrains, suggesting an improved data application for regional climate studies. In particular, they are comparable to the rain gauge data in showing the linear reduction of morning rainfall from coasts to inland regions. TRMM is marginally better than CMORPH in revealing the overall features of diurnal cycles, while higher-resolution CMORPH captures more local details. All three datasets also present that morning rainfall decreases from May–June to July–August, especially on land; it exhibits pronounced interannual variations and a decadal increase in 1998–2008 at coasts. Such long-term variations of morning rainfall are induced by the coastal convergence and mountain liftings of monsoon shear flow interacting with land breeze, which is mainly regulated by monsoon southwesterly winds in the northern part of the South China Sea.
Journal Article
Corridors of Mei-Yu-Season Rainfall over Eastern China
by
Chen, Guixing
,
Guan, Peiying
,
Zeng, Wenxin
in
Annual variations
,
Anomalies
,
Archives & records
2020
Successive mesoscale convective systems may develop for several days during the mei-yu season (June–July) over eastern China. They can yield excessive rainfall in a narrow latitudinal band (called a corridor), causing severe floods. The climatology of rainfall corridors and related environmental factors are examined using 20 yr of satellite rainfall and atmospheric data. A total of 93 corridors are observed over eastern China, with maximum occurrence at 27°–31°N. They typically last 2–3 days, but some persist ≥4 days, with an extreme event lasting 11 days. These multiday convective episodes exhibit primary and secondary peaks in the morning and afternoon, respectively, with a diurnal cycle that is in contrast to other afternoon-peak rain events. On average, the corridors occur in ∼23% days of the mei-yu season, but they can contribute ∼51% of the total rainfall. They also vary with years and explain ∼70% of the interannual variance of mei-yu-season rainfall. Composite analyses show that most corridors develop along zonally oriented quasi-stationary mei-yu fronts over central China where monsoon southwesterlies converge with northerly anomalies from the midlatitudes. The monsoon flow accelerates at ∼0200 LST and forms a regional wind maximum or low-level jet over South China, which induces moisture flux convergence in morning-peak corridors. The nocturnal acceleration is less evident for afternoon-peak corridors. The mei-yu front and monsoon southwesterlies also influence the corridor’s duration, which is regulated by a dipole of geopotential anomalies, with positive in the tropics and negative in the midlatitudes. The dipole expresses a joint influence of the blocking patterns in midlatitudes and the El Niño–related anomalous high over the western Pacific Ocean, and the dipole’s intensity explains well the interannual variations of the corridors.
Journal Article
Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision
by
Zhang, Fengmei
,
Han, Zhigang
,
Yi, Qiying
in
Animals
,
Biomaterials
,
Biomedical Engineering and Bioengineering
2019
Background
Silk fibroin hydrogel, derived from
Bombyx mori
cocoons, has been shown to have potential effects on wound healing due to its excellent biocompatibility and less immunogenic and biodegradable properties. Many studies suggest silk fibroin as a promising material of wound dressing and it can support the adhesion and proliferation of a variety of human cells in vitro. However, lack of translational evidence has hampered its clinical applications for skin repair. Herein, a heparin-immobilized fibroin hydrogel was fabricated to deliver FGF1 (human acidic fibroblast growth factor 1) on top of wound in rats with full-thickness skin excision by performing comprehensive preclinical studies to fully evaluate its safety and effectiveness. The wound-healing efficiency of developed fibroin hydrogels was evaluated in full-thickness wound model of rats, compared with the chitosan used clinically.
Results
The water absorption, swelling ratio, accumulative FGF1 releasing rate and biodegradation ratio of fabricated hydrogels were measured. The regenerated fibroin hydrogels with good water uptake properties rapidly swelled to a 17.3-fold maximum swelling behavior over 12 h and a total amount of 40.48 ± 1.28% hydrogels was lost within 15 days. Furthermore, accumulative releasing data suggested that heparinized hydrogels possessed effective release behavior of FGF1. Then full-thickness skin excision was created in rats and left untreated or covered with heparinized fibroin hydrogels-immobilized recombinant human FGF1. The histological evaluation using hematoxylin and eosin (HE) and Masson’s trichrome (MT) staining was performed to observe the dermic formation and collagen deposition on the wound-healing site. To evaluate the wound-healing mechanisms induced by fibroin hydrogel treatment, wound-healing scratch and cell proliferation assay were performed. it was found that both fibroin hydrogels and FGF1 can facilitate the migration of fibroblast L929 cells proliferation and migration.
Conclusion
This study provides systematic preclinical evidence that the silk fibroin promotes wound healing as a wound-healing dressing, thereby establishing a foundation toward its further application for new treatment options of wound repair and regeneration.
Journal Article
Automated Fabrication of Smart Strain Sensing Threads
2024
With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.
Journal Article
Temperature Sensing Shape Morphing Antenna (ShMoA)
2022
Devices that can morph their functions on demand provide a rich yet unexplored paradigm for the next generation of electronic devices and sensors. For example, an antenna that can morph its shape can be used to adapt communication to different wireless standards or improve wireless signal reception. We utilize temperature-sensitive shape memory alloys (SMA) to realize a shape morphing antenna (ShMoA). In the designed architecture, multiple conjoined shape memory alloy sections form the antenna. The shape morphing of this antenna is achieved through temperature control. Different temperature threshold levels are used for programming the shape. Besides its conventional use for RF applications, ShMoA can serve as a multi-level temperature sensor, analogous to thermoreceptors in an insect antenna. ShMoA essentially combines the function of temperature sensing, embedded computing for detection of threshold crossings, and radio frequency readout, all in the single construct of a shape-morphing antenna (ShMoA) without the need for any battery or peripheral electronics. The ShMoA can be employed as bio-inspired wireless temperature sensing antennae on mobile robotic flies, insects, drones and other robots. It can also be deployed as programmable antennas for multi-standard wireless communication.
Journal Article
Battery-Free Shape Memory Alloy Antennas for Detection and Recording of Peak Temperature Activity
2022
Economical sensing and recording of temperatures are important for monitoring the supply chain. Existing approaches measure the entire temperature profile over time using electronic devices running on a battery. This paper presents a simple, intelligent, battery-free solution for capturing key temperature events using the natural thermo-mechanical state of a Shape Memory Alloy (SMA). This approach utilizes the temperature-induced irreversible mechanical deformation of the SMA as a natural way to capture the temperature history without the need for electronic data logging. In this article, two-way SMA is used to record both high-temperature and low-temperature peak events. Precise thermo-mechanically trained SMA are employed as arms of the dipole antenna for Radio Frequency (RF) readout. The fabricated antenna sensor works at 1 GHz and achieves a sensitivity of 0.24 dB/°C and −0.16 dB/°C for recording temperature maxima and minima, respectively.
Journal Article
Synchronization of inspiratory burst onset along the ventral respiratory column in the neonate mouse is mediated by electrotonic coupling
by
Morgado-Valle, Consuelo
,
Chu, Tianci
,
Cai, Jun
in
Animals
,
Biomedical and Life Sciences
,
Care and treatment
2023
Breathing is a singularly robust behavior, yet this motor pattern is continuously modulated at slow and fast timescales to maintain blood-gas homeostasis, while intercalating orofacial behaviors. This functional multiplexing goes beyond the rhythmogenic function that is typically ascribed to medullary respiration-modulated networks and may explain lack of progress in identifying the mechanism and constituents of the respiratory rhythm generator. By recording optically along the ventral respiratory column in medulla, we found convergent evidence that rhythmogenic function is distributed over a dispersed and heterogeneous network that is synchronized by electrotonic coupling across a neuronal syncytium. First, high-speed recordings revealed that inspiratory onset occurred synchronously along the column and did not emanate from a rhythmogenic core. Second, following synaptic isolation, synchronized stationary rhythmic activity was detected along the column. This activity was attenuated following gap junction blockade and was silenced by tetrodotoxin. The layering of syncytial and synaptic coupling complicates identification of rhythmogenic mechanism, while enabling functional multiplexing.
Journal Article
Microfluidic-based fabrication and characterization of drug-loaded PLGA magnetic microspheres with tunable shell thickness
2021
To overcome the shortcoming of conventional transarterial chemoembolization (cTACE) like high systemic release, a novel droplet-based flow-focusing microfluidic device was fabricated and the biocompatible poly(lactic-co-glycolic acid) (PLGA) magnetic drug-eluting beads transarterial chemoembolization (TACE) microspheres with tunable size and shell thickness were prepared via this device. Paclitaxel, as a model active, was loaded through O/O/W emulsion method with high efficiency. The size and the shell thickness vary when adjusting the flow velocity and/or solution concentration, which caters for different clinical requirements to have different drug loading and release behavior. Under the designed experimental conditions, the average diameter of the microspheres is 60 ± 2 μm and the drug loading efficiency has reached 6%. The drug release behavior of the microspheres shows the combination of delayed release and smoothly sustained release profiles and the release kinetics differ within different shell thickness. The microspheres also own the potential of magnetic resonance imaging (MRI) visuality because of the loaded magnetic nanoparticles. The microsphere preparation method and device we proposed are simple, feasible, and effective, which have a good application prospect.
Journal Article