Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
836 result(s) for "Zeng, Yuanyuan"
Sort by:
Rapid visualization and detection of Staphylococcus aureus based on loop-mediated isothermal amplification
Staphylococcus aureus is a common clinical bacterial pathogen that can cause a diverse range of infections. The establishment of a rapid and reliable assay for the early diagnosis and detection of S. aureus is of great significance. In this study, we developed a closed-tube loop-mediated isothermal amplification (LAMP) assay for the visual detection of S. aureus using the colorimetric indicator hydroxy naphthol blue (HNB). The LAMP reaction was optimized by adjusting the amplification temperature, the concentrations of Mg2+, dNTP, and HNB, and the incubation time. In the optimized reaction system, the specificity of LAMP for S. aureus was 100%. The results established that this method accurately identified S. aureus, with no cross-reactivity with 14 non-S. aureus strains. The limit of detection (LOD) of LAMP was 8 copies/reaction of purified plasmid DNA or 400 colony-forming units/reaction of S. aureus. Compared with conventional PCR, LAMP lowered the LOD by tenfold. Finally, 220 clinically isolated strains of S. aureus and 149 non-S. aureus strains were used to evaluate the diagnostic efficacy of LAMP (test accuracy, 99.46%). The findings indicated that LAMP is a reliable test for S. aureus and could be a promising tool for the rapid diagnosis of S. aureus infections.
The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer
Negative regulation of the signal mediated by the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway can effectively inhibit the function of T and B cells, which play a key role in the regulation of immune response. Recently, emerging evidence has suggested that the expression of PD-L1 is related to the mutation status of the epidermal growth factor receptor (EGFR). Moreover, the activation of the EGFR signaling pathway can induce expression of PD-L1. In the present study, we demonstrated that activated EGFR can upregulate the expression of PD-L1 through the interleukin 6/Janus kinase/signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) signaling pathway in non-small cell lung cancer (NSCLC) cells. Cells treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) can downregulate the activation of the IL-6/JAK/STAT3 pathway, which subsequently reduces the expression of PD-L1. Furthermore, silencing of PD-L1 expression in NSCLC cells correlated with inhibition of cell proliferation and enhanced tumor cell apoptosis. In summary, our research indicates that EGFR is involved in the regulation of PD-L1 expression and cell proliferation via the IL-6/JAK/STAT3 signaling pathway in NSCLC. The present study suggests the potential of combined targeted therapy with immunotherapy in the treatment of NSCLC.
Characterization of DREB family genes in Lotus japonicus and LjDREB2B overexpression increased drought tolerance in transgenic Arabidopsis
Background Drought stress affects plant growth and development. DREB proteins play important roles in modulating plant growth, development, and stress responses, particularly under drought stress. To study the function of DREB transcription factors (TFs), we screened key DREB-regulating TFs for drought in Lotus japonicus . Results Forty-two DREB TFs were identified, and phylogenetic analysis of proteins from L. japonicus classified them into five subfamilies (A1, A2, A4, A5, A6). The gene motif composition of the proteins is conserved within the same subfamily. Based on the cis-acting regulatory element analysis, we identified many growth-, hormone-, and stress-responsive elements within the promoter regions of DREB. We further analyzed the expression pattern of four genes in the A2 subfamily in response to drought stress. We found that the expression of most of the LjDREB A2 subfamily genes, especially LjDREB2B , was induced by drought stress. We further generated LjDREB2B overexpression transgenic Arabidopsis plants. Under drought stress, the growth of wild-type (WT) and overexpressing LjDREB2B (OE) Arabidopsis lines was inhibited; however, OE plants showed better growth. The malondialdehyde content of LjDREB2B overexpressing lines was lower than that of the WT plants, whereas the proline content and antioxidant enzyme activities in the OE lines were significantly higher than those in the WT plants. Furthermore, after drought stress, the expression levels of AtP5CS1 , AtP5CS2 , AtRD29A , and AtRD29B in the OE lines were significantly higher than those in the WT plants. Conclusions Our results facilitate further functional analysis of L. japonicus DREB . LjDREB2B overexpression improves drought tolerance in transgenic Arabidopsis . These results indicate that DREB holds great potential for the genetic improvement of drought tolerance in L. japonicus .
KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway
In addition to the role of programmed cell death ligand 1 (PD-L1) in facilitating tumour cells escape from immune surveillance, it is considered as a crucial effector in transducing intrinsic signals to promote tumour development. Our previous study has pointed out that PD-L1 promotes non-small cell lung cancer (NSCLC) cell proliferation, but the mechanism remains elusive. Here we first demonstrated that PD-L1 expression levels were positively correlated with p-MerTK levels in patient samples and NSCLC cell lines. In addition, PD-L1 knockdown led to the reduced phosphorylation level of MerTK in vitro. We next showed that PD-L1 regulated NSCLC cell proliferation via Gas6/MerTK signaling pathway in vitro and in vivo. To investigate the underlying mechanism, we unexpectedly found that PD-L1 translocated into the nucleus of cancer cells which was facilitated through the binding of Karyopherin β1 (KPNB1). Nuclear PD-L1 (nPD-L1), coupled with transcription factor Sp1, regulated the synthesis of Gas6 mRNA and promoted Gas6 secretion to activate MerTK signaling pathway. Taken together, our results shed light on the novel role of nPD-L1 in NSCLC cell proliferation and reveal a new molecular mechanism underlying nPD-L1-mediated Gas6/MerTK signaling activation. All above findings provide the possible combinational implications for PD-L1 targeted immunotherapy in the clinic.
PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer
Background Interferon-γ (IFN-γ) is conventionally regarded as an inflammatory cytokine that has a pivotal role in anti-infection and tumor immune surveillance. It has been used clinically to treat a variety of malignancies. However, increased evidence has suggested IFN-γ can act to induce tumor progression. The role of IFN-γ in regulating antitumor immunity appears to be complex and paradoxical. The mechanism underlying the dual aspects of IFN-γ function in antitumor immunity is not clear. Methods (1) Lung cancer cells (A549 cells) were cultured with pleural effusion or supernatant of tumor-associated macrophages (TAMs supernatant), and the expression levels of PD-L1 were detected by flow cytometer. The invasion capacity was measured in vitro using trans-well migration assays. (2) Pleural effusion mononuclear cells (PEMC) were separated by Ficoll Hypaque gradient. The expression of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and INF-γ in the tumor-associated macrophages was analyzed by flow cytometry. (3) A549 cells were stimulated with IL-6, IL-10, TNF-α, or IFN-γ and then the expression levels were detected by flow cytometry. (4) The expression levels of phospho-ERK (p-ERK), phospho-AKT (p-AKT), and phospho-Sat3 (p-Stat3) were analyzed with Western blot after stimulation with IFN-γ. (5) Cotreatment of the A549 cells with MAPK/ERK-specific inhibitor PD98059, PI3K/AKT-specific inhibitor LY294002, or JAK/STAT3-specific inhibitor AG490, respectively, blocked IFN-γ-induced PD-L1 expression, and then PD-L1 expression was detected by flow cytometry. Results We demonstrated that TAMs could induce the expression of PD-L1 by the secretion of IFN-γ through the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in A549 cells. Furthermore, the signal pathway blockers LY294002 or AG490 could block the induced expression of PD-L1 by IFN-γ. Conclusions IFN-γ was not always successful as an antitumor agent. It also can promote tumor cells to evade immune surveillance. Researchers should be cautious in using IFN-γ as a therapeutic agent for cancer treatment.
Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer
Background TGF-β promotes tumor invasion and metastasis through inducing epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) are recognized as functional non-coding RNAs involved in human cancers. However, whether and how circRNAs contribute to TGF-β-induced EMT and metastasis in NSCLC remain vague. Here, we investigated the regulation and function of Circular RNA hsa_circ_0008305 (circPTK2) in TGF-β-induced EMT and tumor metastasis, as well as a link between circPTK2 and transcriptional intermediary factor 1 γ (TIF1γ) in NSCLC. Methods Circular RNAs were determined by human circRNA Array analysis, real-time quantitative reverse transcriptase PCR and northern blot. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were employed to test the interaction between circPTK2 and miR-429/miR-200b-3p. Ectopic overexpression and siRNA-mediated knockdown of circPTK2, TGF-β-induced EMT, Transwell migration and invasion in vitro, and in vivo experiment of metastasis were used to evaluate the function of circPTK2. Transcription and prognosis analyses were done in public databases. Results CircPTK2 and TIF1γ were significantly down-regulated in NSCLC cells undergoing EMT induced by TGF-β. CircPTK2 overexpression augmented TIF1γ expression, inhibited TGF-β-induced EMT and NSCLC cell invasion, whereas circPTK2 knockdown had the opposite effects. CircPTK2 functions as a sponge of miR-429/miR-200b-3p, and miR-429/miR-200b-3p promote TGF-β-induced EMT and NSCLC cell invasion by targeting TIF1γ. CircPTK2 overexpression inhibited the invasion-promoting phenotype of endogenous miR-429/miR-200b-3p in NSCLC cells in response to TGF-β. CircPTK2 overexpression significantly decreased the expression of Snail, an important downstream transcriptional activator of TGF-β/Smad signaling. In an in vivo experiment of metastasis, circPTK2 overexpression suppressed NSCLC cell metastasis. Moreover, circPTK2 expression was dramatically down-regulated and positively correlated with TIF1γ expression in human NSCLC tissues. Especially, circPTK2 was significantly lower in metastatic NSCLC tissues than non-metastatic counterparts. Conclusion Our findings show that circPTK2 (hsa_circ_0008305) inhibits TGF-β-induced EMT and metastasis by controlling TIF1γ in NSCLC, revealing a novel mechanism by which circRNA regulates TGF-β-induced EMT and tumor metastasis, and suggesting that circPTK2 overexpression could provide a therapeutic strategy for advanced NSCLC.
HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment
Neovascularization is a key factor that contributes to tumor metastasis, and vasculogenic mimicry (VM) is an important form of neovascularization found in highly invasive tumors, including lung cancer. Despite the increasing number of studies focusing on VM, the mechanisms underlying VM formation remain unclear. Herein, our study explored the role of the HIF-1α/NRP1 axis in mediating lung adenocarcinoma metastasis and VM formation. HIF-1α, NRP1 expression, and VM in lung adenocarcinoma (LUAD) patient samples were examined by immunohistochemical staining. Quantitative real-time (qRT-PCR), western blot, transwell assay, wound healing assay, and tube formation assay were performed to verify the role of HIF-1α/NRP1 axis in LUAD metastasis and VM formation. ChIP and luciferase reporter assay were used to confirm whether NRP1 is a direct target of HIF-1α. In LUAD tissues, we confirmed a positive relationship between HIF-1α and NRP1 expression. Importantly, high HIF-1α and NRP1 expression and the presence of VM were correlated with poor prognosis. We also found that HIF-1α could induce LUAD cell migration, invasion, and VM formation by regulating NRP1. Moreover, we demonstrated that HIF-1α can directly bind to the NRP1 promoter located between −2009 and −2017 of the promoter. Mechanistically, MMP2, VE-cadherin, and Vimentin expression were affected. HIF-1α plays an important role in inducing lung adenocarcinoma cell metastasis and VM formation via upregulation of NRP1. This study highlights the potential therapeutic value of targeting NRP1 for suppressing lung adenocarcinoma metastasis and progression.
Directional routing and scheduling for green vehicular delay tolerant networks
The vehicle delay tolerant networks (DTNs) make opportunistic communications by utilizing the mobility of vehicles, where the node makes delay-tolerant based “carry and forward” mechanism to deliver the packets. The routing schemes for vehicle networks are challenging for varied network environment. Most of the existing DTN routing including routing for vehicular DTNs mainly focus on metrics such as delay, hop count and bandwidth, etc. A new focus in green communications is with the goal of saving energy by optimizing network performance and ultimately protecting the natural climate. The energy–efficient communication schemes designed for vehicular networks are imminent because of the pollution, energy consumption and heat dissipation. In this paper, we present a directional routing and scheduling scheme (DRSS) for green vehicle DTNs by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay. Our scheme solves the routing and scheduling problem as a learning process by geographic routing and flow control toward the optimal direction. To speed up the learning process, our scheme uses a hybrid method with forwarding and replication according to traffic pattern. The DRSS algorithm explores the possible strategies, and then exploits the knowledge obtained to adapt its strategy and achieve the desired overall objective when considering the stochastic non-cooperative game in on-line multi-commodity routing situations. The simulation results of a vehicular DTN with predetermined mobility model show DRSS achieves good energy efficiency with learning ability, which can guarantee the delivery ratio within the delay bound.
Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein
In this study, the ultrasonic-assisted extraction of silkworm pupae protein (SPP) was optimized using response surface methodology. Subsequently, the effects of ultrasonic treatment on the structural and functional characteristics of SPP were systematically analyzed and verified through Pearson correlation analysis. The results showed that the optimal extraction parameters were an ultrasonic treatment time of 120 min, a power of 115 W, a temperature of 54 °C, pH of 10.5, and the average extraction yield was 68.087%. Compared to the control, ultrasonic treatment significantly improved the functional properties of SPP, including solubility (13.13 g/L), water holding capacity (0.18%), oil holding capacity (0.28%), foaming capacity (55.35%), foam stability (12.71%), emulsification activity (2.15 m2/g), emulsification stability (21.95%), gel water holding capacity (11.5%), gel hardness (1.02 N), and gel elasticity (0.49 mm). In addition, the adsorption ability of SPP for 2-octanone and aldehyde was enhanced after ultrasonic treatment. Furthermore, the absorption intensity and maximum wavelength of the SPP fluorescence spectrum extracted via ultrasonic treatment were enhanced, along with the increased surface hydrophobicity and more stable secondary structure which contributed to promoting the functional properties of SPP, proven by Pearson correlation analysis. This study provides a theoretical basis for the further utilization of SPP in the food industry.
Adaptive Sampling for Urban Air Quality through Participatory Sensing
Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency.