Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Zerbini, Francisco Murilo"
Sort by:
Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019)
This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.
Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017)
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.
Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018)
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2018. A total of 451 species, 69 genera, 11 subfamilies, 9 families and one new order were added to the taxonomy. The current totals at each taxonomic level now stand at 9 orders, 131 families, 46 subfamilies, 803 genera and 4853 species. A change was made to the International Code of Virus Classification and Nomenclature to allow the use of the names of people in taxon names under appropriate circumstances. An updated Master Species List incorporating the approved changes was released in March 2018 ( https://talk.ictvonline.org/taxonomy/ ).
50 years of the International Committee on Taxonomy of Viruses: progress and prospects
We mark the 50th anniversary of the International Committee on Taxonomy of Viruses (ICTV) by presenting a brief history of the organization since its foundation, showing how it has adapted to advancements in our knowledge of virus diversity and the methods used to characterize it. We also outline recent developments, supported by a grant from the Wellcome Trust (UK), that are facilitating substantial changes in the operations of the ICTV and promoting dialogue with the virology community. These developments will generate improved online resources, including a freely available and regularly updated ICTV Virus Taxonomy Report. They also include a series of meetings between the ICTV and the broader community focused on some of the major challenges facing virus taxonomy, with the outcomes helping to inform the future policy and practice of the ICTV.
Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2016. Changes to virus taxonomy (the Universal Scheme of Virus Classification of the International Committee on Taxonomy of Viruses [ICTV]) now take place annually and are the result of a multi-stage process. In accordance with the ICTV Statutes ( http://www.ictvonline.org/statutes.asp ), proposals submitted to the ICTV Executive Committee (EC) undergo a review process that involves input from the ICTV Study Groups (SGs) and Subcommittees (SCs), other interested virologists, and the EC. After final approval by the EC, proposals are then presented for ratification to the full ICTV membership by publication on an ICTV web site ( http://www.ictvonline.org/ ) followed by an electronic vote. The latest set of proposals approved by the EC was made available on the ICTV website by January 2016 ( https://talk.ictvonline.org/files/proposals/ ). A list of these proposals was then emailed on 28 March 2016 to the 148 members of ICTV, namely the EC Members, Life Members, ICTV Subcommittee Members (including the SG chairs) and ICTV National Representatives. Members were then requested to vote on whether to ratify the taxonomic proposals (voting closed on 29 April 2016).
Binomial nomenclature for virus species: a consultation
The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.
The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease
Papaya sticky disease, or \"meleira\", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.
Complete genome sequences of two gemycircularviruses associated with non-cultivated plants in Brazil
Gemycircularviruses (genus Gemycircularvirus , family Genomoviridae ) are single-stranded DNA viruses that are spread around the world in association with several organisms and environments. In this work, we identified two gemycircularviruses associated with two non-cultivated plants in Brazil, Momordica charantia and Euphorbia heterophylla . Both viruses display the general genome structure of gemycircularviruses. The virus isolated from M. charantia showed the highest nucleotide sequence identity with Pteropus associated gemycircularvirus 5, and an atypical structure consisting of a hairpin embedded in the major stem-loop was observed in the intergenic region. The virus from E. heterophylla showed the highest nucleotide sequence identity with Odonata associated gemycircularvirus 1. Phylogenetic analysis groups the two new viruses together with other genomoviruses of the genus Gemycircularvirus .
Specific Nucleotides in the Common Region of the Begomovirus Tomato Rugose Mosaic Virus (ToRMV) Are Responsible for the Negative Interference over Tomato Severe Rugose Virus (ToSRV) in Mixed Infection
Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.
Geminivirus data warehouse: a database enriched with machine learning approaches
Background The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. Results Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. Conclusions The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.