Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Zeyaullah, Md"
Sort by:
In-silico approaches for identification of compounds inhibiting SARS-CoV-2 3CL protease
The world has witnessed of many pandemic waves of SARS-CoV-2. However, the incidence of SARS-CoV-2 infection has now declined but the novel variant and responsible cases has been observed globally. Most of the world population has received the vaccinations, but the immune response against COVID-19 is not long-lasting, which may cause new outbreaks. A highly efficient pharmaceutical molecule is desperately needed in these circumstances. In the present study, a potent natural compound that could inhibit the 3CL protease protein of SARS-CoV-2 was found with computationally intensive search. This research approach is based on physics-based principles and a machine-learning approach. Deep learning design was applied to the library of natural compounds to rank the potential candidates. This procedure screened 32,484 compounds, and the top five hits based on estimated pIC 50 were selected for molecular docking and modeling. This work identified two hit compounds, CMP4 and CMP2, which exhibited strong interaction with the 3CL protease using molecular docking and simulation. These two compounds demonstrated potential interaction with the catalytic residues His41 and Cys154 of the 3CL protease. Their calculated binding free energies to MMGBSA were compared to those of the native 3CL protease inhibitor. Using steered molecular dynamics, the dissociation strength of these complexes was sequentially determined. In conclusion, CMP4 demonstrated strong comparative performance with native inhibitors and was identified as a promising hit candidate. This compound can be applied in-vitro experiment for the validation of its inhibitory activity. Additionally, these methods can be used to identify new binding sites on the enzyme and to design new compounds that target these sites.
Exploring the most promising anti ‐ Depressant drug targeting Microtubule Affinity Receptor Kinase 4 involved in Alzheimer’s Disease through molecular docking and molecular dynamics simulation
Alzheimer’s Disease (AD) is the prevailing type of neurodegenerative illness, characterised by the accumulation of amyloid beta plaques. The symptoms associated with AD are memory loss, emotional variability, and a decline in cognitive functioning. To date, the pharmaceuticals currently accessible in the marketplace are limited to symptom management. According to several research, antidepressants have demonstrated potential efficacy in the management of AD. In this particular investigation, a total of 24 anti-depressant medications were selected as ligands, while the Microtubule Affinity Receptor Kinase 4 (MARK4) protein was chosen as the focal point of our study. The selection of MARK4 was based on its known involvement in the advancement of AD and other types of malignancies, rendering it a highly prospective target for therapeutic interventions. The initial step involved doing ADMET analysis, which was subsequently followed by molecular docking of 24 drugs. This was succeeded by molecular dynamics simulation and molecular mechanics generalised Born surface area (MMGBSA) calculations. Upon conducting molecular docking experiments, it has been determined that the binding affinities observed fall within the range of -5.5 kcal/mol to -9.0 kcal/mol. In this study, we selected six anti-depressant compounds (CID ID ‐ 4184, 2771, 4205, 5533, 4543, and 2160) based on their binding affinities, which were determined to be -9.0, -8.7, -8.4, -8.3, -8.2, and -8.2, respectively. Molecular dynamics simulations were conducted for all six drugs, with donepezil serving as the control drug. Various analyses were performed, including basic analysis and post-trajectory analysis such as free energy landscape (FEL), polarizable continuum model (PCM), and MMGBSA calculations. Based on the findings from molecular dynamics simulations and the MMGBSA analysis, it can be inferred that citalopram and mirtazapine exhibit considerable potential as anti-depressant agents. Consequently, these compounds warrant further investigation through in vitro and in vivo investigations in the context of treating AD.
Probiotics and Cancer: Mechanistic Insights and Organ-Specific Impact
Probiotics have been revealed in various studies to modulate the gut microbiome and have a substantial impact on cancers, comprising oesophageal, lung, liver, and colorectal cancer. These properties are endorsed by a diverse mechanism, including the modulation of the gut microbiome; preventing the metabolism of carcinogenic substances; exertion of anti-inflammatory action, immunopotentiator properties, and antioxidant activities; prevention of tumour growth; and decreasing the adverse effects of chemotherapy. There are promising perspectives regarding the new and developing field of probiotic research in relation to cancer treatment. This review demonstrates the recent findings of probiotics efficacy in cancer prevention and treatment and organ-specific impact along with protection from chemotherapy-induced side effects. The present evidence specifies that strategic probiotics application may be an effective complementary approach for the management of numerous kinds of cancer; still, additional studies and clinical trials are required to comprehend the relationships between cancer and probiotics.
Association of Helicobacter pylori Infection and Host Cytokine Gene Polymorphism with Gastric Cancer
The global cancer burden of new cases of various types rose with millions of death in 2018. Based on the data extracted by GLOBOCAN 2018, gastric cancer (GC) is the third leading cause of mortality related to cancer across the globe. Carcinogenic or oncogenic infections associated with Helicobacter pylori (Hp) are regarded as one of the essential risk factors for GC development. It contributes to the increased production of cytokines that cause inflammation prior to their growth in the host cells. Hp infections and specific types of polymorphisms within the host cells encoding cytokines are significant contributors to the hostʼs increased susceptibility in terms of the development of GC. Against the backdrop of such an observation is that only a small portion of the cells infected can become malignant. The diversities are a consequence of the differences in the pathogenic pathway of the Hp, susceptibility of the host, environmental conditions, and interplay between these factors. It is evident that hosts carrying cytokine genes with high inflammatory levels and polymorphism tend to exhibit an increased risk of development of GC, with special emphasis being placed on the host cytokines gene polymorphisms.
Role of bioactive compounds in the treatment of hepatitis: A review
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Pharmacogenomics for neurodegenerative disorders - a focused review
Neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual’s genetic profile, thereby improving therapeutic efficacy and reducing adverse effects. This focused review explores the genetic factors influencing drug responses in neurodegenerative diseases and the potential of pharmacogenomics to revolutionize their treatment. Key genetic markers, such as the APOE ε4 allele in AD and the CYP2D6 polymorphisms in PD, are highlighted for their roles in modulating drug efficacy. Additionally, advancements in pharmacogenomic tools, including genome-wide association studies (GWAS), next-generation sequencing (NGS), and CRISPR-Cas9, are discussed for their contributions to personalized medicine. The application of pharmacogenomics in clinical practice and its prospects, including ethical and data integration challenges, are also examined.
Oncolytic Viruses in the Treatment of Cancer: A Review of Current Strategies
Oncolytic viruses are live, replication-competent viruses that replicate selectively in tumor cells leading to the destruction of the tumor cells. Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are promising a new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies. Virotherapy is not a new concept, but recent technical advances in the genetic modification of oncolytic viruses have improved their tumor specificity, leading to the development of new weapons for the war against cancer. Clinical trials with oncolytic viruses demonstrate the safety and feasibility of an effective virotherapeutic approach. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored. Systemic administrations of oncolytic viruses will successfully extend novel treatment against a range of tumors. Combination therapy has shown some encouraging antitumor responses by eliciting strong immunity against established cancer.
Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach
Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1–4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern.
Ganoderma lucidum: Novel Insight into Hepatoprotective Potential with Mechanisms of Action
Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.
IGanoderma lucidum/I: Novel Insight into Hepatoprotective Potential with Mechanisms of Action
Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.