Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Zhang, Beijian"
Sort by:
Exercise improves cardiac function and glucose metabolism in mice with experimental myocardial infarction through inhibiting HDAC4 and upregulating GLUT1 expression
This study aims to determine the effect of exercise on the cardiac function, metabolic profiles and related molecular mechanisms in mice with ischemic-induced heart failure (HF). HF was induced by myocardial infarction (MI) in C57BL6/N mice. Cardiac function and physical endurance were improved in HF mice after exercise. Micro-PET/CT scanning revealed enhanced myocardial glucose uptake in vivo in HF mice after exercise. Exercise reduced mitochondrial structural damage in HF mice. Cardiomyocytes isolated from HF + exercise mice showed increased glycolysis capacity, respiratory function and ATP production. Both mRNA and protein expression of glucose transporter 1 (GLUT1) were upregulated after exercise. Results of ChIP-PCR revealed a novel interaction between transcription factor myocyte enhancer factor 2a (MEF2a) and GLUT1 in hearts of HF + exercise mice. Exercise also activated myocardial AMP-activated protein kinase (AMPK), which in turn phosphorylated histone deacetylase 4 (HDAC4), and thereby modulated the GLUT1 expression through reducing its inhibition on MEF2a in HF mice. Inhibition of HDAC4 also improved cardiac function in HF mice. Moreover, knockdown of GLUT1 impaired the systolic and diastolic function of isolated cardiomyocytes. In conclusion, exercise improves cardiac function and glucose metabolism in HF mice through inhibiting HDAC4 and upregulating GLUT1 expression.
Loss of m6A demethylase ALKBH5 promotes post‐ischemic angiogenesis via post‐transcriptional stabilization of WNT5A
Background Post‐ischemic angiogenesis is critical for blood flow recovery and ischemic tissue repair. N6‐methyladenosine (m6A) plays essential roles in numerous biological processes. However, the impact and connected mechanism of m6A on post‐ischemic angiogenesis are not fully understood. Methods AlkB homolog 5 (ALKBH5) was screened out among several methyltransferases and demethylases involved in dynamic m6A regulation. Cardiac microvascular endothelial cells (CMECs) angiogenesis and WNT family member 5A (WNT5A) stability were analyzed upon ALKBH5 overexpression with adenovirus or knockdown with small interfering RNAs in vitro. The blood flow recovery, capillary, and small artery densities were evaluated in adeno‐associated virus (AAV)‐ALKBH5 overexpression or ALKBH5 knockout (KO) mice in a hind‐limb ischemia model. The same experiments were conducted to explore the translational value of transient silencing of ALKBH5 with adenovirus. Results ALKBH5 was significantly upregulated in hypoxic CMECs and led to a global decrease of m6A level. ALKBH5 overexpression further reduced m6A level in normoxic and hypoxic CMECs, impaired proliferation, migration, and tube formation only in hypoxic CMECs. Conversely, ALKBH5 knockdown preserved m6A levels and promoted angiogenic phenotypes in hypoxic but not in normoxic CMECs. Mechanistically, ALKBH5 regulated WNT5A expression through post‐transcriptional mRNA modulation in an m6A‐dependent manner, which decreased its stability and subsequently impeded angiogenesis in hypoxic CMECs. Furthermore, ALKBH5 overexpression hindered blood flow recovery and reduced CD31 and alpha‐smooth muscle actin expression in hind‐limb ischemia mice. As expected, ALKBH5‐KO mice exhibited improved blood flow recovery, increased capillary, and small artery densities after hind‐limb ischemia, and similar beneficial effects were observed in mice with transient adenoviral ALKBH5 gene silencing. Conclusion We demonstrate that ALKBH5 is a negative regulator of post‐ischemic angiogenesis via post‐transcriptional modulation and destabilization of WNT5A mRNA in an m6A‐dependent manner. Targeting ALKBH5 may be a potential therapeutic option for ischemic diseases, including peripheral artery disease.
Histidine triad nucleotide‐binding protein 2 attenuates doxorubicin‐induced cardiotoxicity through restoring lysosomal function and promoting autophagy in mice
Doxorubicin (DOX) is an effective chemotherapy drug widely used against various cancers but is limited by severe cardiotoxicity. Mitochondria–lysosome interactions are crucial for cellular homeostasis. This study investigates the role of histidine triad nucleotide‐binding protein 2 (HINT2) in DOX‐induced cardiotoxicity (DIC). We found that HINT2 expression was significantly upregulated in the hearts of DOX‐treated mice. Cardiac‐specific Hint2 knockout mice exhibited significantly worse cardiac dysfunction, impaired autophagic flux, and lysosomal dysfunction after DOX treatment. Mechanistically, HINT2 deficiency reduced oxidative phosphorylation complex I activity and disrupted the nicotinamide adenine dinucleotide NAD+/NADH ratio, impairing lysosomal function. Further, HINT2 deficiency suppressed sterol regulatory element binding protein 2 activity, downregulating transcription factor A mitochondrial, a critical regulator of complex I. Nicotinamide mononucleotide (NMN) supplementation restored lysosomal function in vitro, while cardiac‐specific Hint2 overexpression using adeno‐associated virus 9 or adenovirus alleviated DIC both in vivo and in vitro. These findings highlight HINT2 as a key cardioprotective factor that mitigates DIC by restoring the NAD+/NADH ratio, lysosomal function, and autophagy. Therapeutic strategies enhancing HINT2 expression or supplementing NMN may reduce cardiac damage and heart failure caused by DOX. Proposed model of how HINT2 deficiency aggravates DOX‐induced cardiotoxicity Hint2 cKO causes cholesterol accumulation and subsequently inhibits the transcriptional activity of SREBF2, which downregulates TFAM expression. The decrease in TFAM expression reduces both the expression and activity of OXPHOS complex Ι, and lowers the NAD+/NADH ratio, leading to lysosome dysfunction. This impaired lysosome function results in the accumulation of autolysosomes and dysfunction in autolysosomes acidification, which subsequently increases cardiotoxicity.
Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Up-to-date estimates of stroke burden and attributable risks and their trends at global, regional, and national levels are essential for evidence-based health care, prevention, and resource allocation planning. We aimed to provide such estimates for the period 1990–2021. We estimated incidence, prevalence, death, and disability-adjusted life-year (DALY) counts and age-standardised rates per 100 000 people per year for overall stroke, ischaemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage, for 204 countries and territories from 1990 to 2021. We also calculated burden of stroke attributable to 23 risk factors and six risk clusters (air pollution, tobacco smoking, behavioural, dietary, environmental, and metabolic risks) at the global and regional levels (21 GBD regions and Socio-demographic Index [SDI] quintiles), using the standard GBD methodology. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. In 2021, stroke was the third most common GBD level 3 cause of death (7·3 million [95% UI 6·6–7·8] deaths; 10·7% [9·8–11·3] of all deaths) after ischaemic heart disease and COVID-19, and the fourth most common cause of DALYs (160·5 million [147·8–171·6] DALYs; 5·6% [5·0–6·1] of all DALYs). In 2021, there were 93·8 million (89·0–99·3) prevalent and 11·9 million (10·7–13·2) incident strokes. We found disparities in stroke burden and risk factors by GBD region, country or territory, and SDI, as well as a stagnation in the reduction of incidence from 2015 onwards, and even some increases in the stroke incidence, death, prevalence, and DALY rates in southeast Asia, east Asia, and Oceania, countries with lower SDI, and people younger than 70 years. Globally, ischaemic stroke constituted 65·3% (62·4–67·7), intracerebral haemorrhage constituted 28·8% (28·3–28·8), and subarachnoid haemorrhage constituted 5·8% (5·7–6·0) of incident strokes. There were substantial increases in DALYs attributable to high BMI (88·2% [53·4–117·7]), high ambient temperature (72·4% [51·1 to 179·5]), high fasting plasma glucose (32·1% [26·7–38·1]), diet high in sugar-sweetened beverages (23·4% [12·7–35·7]), low physical activity (11·3% [1·8–34·9]), high systolic blood pressure (6·7% [2·5–11·6]), lead exposure (6·5% [4·5–11·2]), and diet low in omega-6 polyunsaturated fatty acids (5·3% [0·5–10·5]). Stroke burden has increased from 1990 to 2021, and the contribution of several risk factors has also increased. Effective, accessible, and affordable measures to improve stroke surveillance, prevention (with the emphasis on blood pressure, lifestyle, and environmental factors), acute care, and rehabilitation need to be urgently implemented across all countries to reduce stroke burden. Bill & Melinda Gates Foundation.
Global burden of 292 causes of death in 204 countries and territories and 660 subnational locations, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023
Timely and comprehensive analyses of causes of death stratified by age, sex, and location are essential for shaping effective health policies aimed at reducing global mortality. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 provides cause-specific mortality estimates measured in counts, rates, and years of life lost (YLLs). GBD 2023 aimed to enhance our understanding of the relationship between age and cause of death by quantifying the probability of dying before age 70 years (70q0) and the mean age at death by cause and sex. This study enables comparisons of the impact of causes of death over time, offering a deeper understanding of how these causes affect global populations. GBD 2023 produced estimates for 292 causes of death disaggregated by age-sex-location-year in 204 countries and territories and 660 subnational locations for each year from 1990 until 2023. We used a modelling tool developed for GBD, the Cause of Death Ensemble model (CODEm), to estimate cause-specific death rates for most causes. We computed YLLs as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. Probability of death was calculated as the chance of dying from a given cause in a specific age period, for a specific population. Mean age at death was calculated by first assigning the midpoint age of each age group for every death, followed by computing the mean of all midpoint ages across all deaths attributed to a given cause. We used GBD death estimates to calculate the observed mean age at death and to model the expected mean age across causes, sexes, years, and locations. The expected mean age reflects the expected mean age at death for individuals within a population, based on global mortality rates and the population's age structure. Comparatively, the observed mean age represents the actual mean age at death, influenced by all factors unique to a location-specific population, including its age structure. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 250-draw distribution for each metric. Findings are reported as counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2023 include a correction for the misclassification of deaths due to COVID-19, updates to the method used to estimate COVID-19, and updates to the CODEm modelling framework. This analysis used 55 761 data sources, including vital registration and verbal autopsy data as well as data from surveys, censuses, surveillance systems, and cancer registries, among others. For GBD 2023, there were 312 new country-years of vital registration cause-of-death data, 3 country-years of surveillance data, 51 country-years of verbal autopsy data, and 144 country-years of other data types that were added to those used in previous GBD rounds. The initial years of the COVID-19 pandemic caused shifts in long-standing rankings of the leading causes of global deaths: it ranked as the number one age-standardised cause of death at Level 3 of the GBD cause classification hierarchy in 2021. By 2023, COVID-19 dropped to the 20th place among the leading global causes, returning the rankings of the leading two causes to those typical across the time series (ie, ischaemic heart disease and stroke). While ischaemic heart disease and stroke persist as leading causes of death, there has been progress in reducing their age-standardised mortality rates globally. Four other leading causes have also shown large declines in global age-standardised mortality rates across the study period: diarrhoeal diseases, tuberculosis, stomach cancer, and measles. Other causes of death showed disparate patterns between sexes, notably for deaths from conflict and terrorism in some locations. A large reduction in age-standardised rates of YLLs occurred for neonatal disorders. Despite this, neonatal disorders remained the leading cause of global YLLs over the period studied, except in 2021, when COVID-19 was temporarily the leading cause. Compared to 1990, there has been a considerable reduction in total YLLs in many vaccine-preventable diseases, most notably diphtheria, pertussis, tetanus, and measles. In addition, this study quantified the mean age at death for all-cause mortality and cause-specific mortality and found noticeable variation by sex and location. The global all-cause mean age at death increased from 46·8 years (95% UI 46·6–47·0) in 1990 to 63·4 years (63·1–63·7) in 2023. For males, mean age increased from 45·4 years (45·1–45·7) to 61·2 years (60·7–61·6), and for females it increased from 48·5 years (48·1–48·8) to 65·9 years (65·5–66·3), from 1990 to 2023. The highest all-cause mean age at death in 2023 was found in the high-income super-region, where the mean age for females reached 80·9 years (80·9–81·0) and for males 74·8 years (74·8–74·9). By comparison, the lowest all-cause mean age at death occurred in sub-Saharan Africa, where it was 38·0 years (37·5–38·4) for females and 35·6 years (35·2–35·9) for males in 2023. Lastly, our study found that all-cause 70q0 decreased across each GBD super-region and region from 2000 to 2023, although with large variability between them. For females, we found that 70q0 notably increased from drug use disorders and conflict and terrorism. Leading causes that increased 70q0 for males also included drug use disorders, as well as diabetes. In sub-Saharan Africa, there was an increase in 70q0 for many non-communicable diseases (NCDs). Additionally, the mean age at death from NCDs was lower than the expected mean age at death for this super-region. By comparison, there was an increase in 70q0 for drug use disorders in the high-income super-region, which also had an observed mean age at death lower than the expected value. We examined global mortality patterns over the past three decades, highlighting—with enhanced estimation methods—the impacts of major events such as the COVID-19 pandemic, in addition to broader trends such as increasing NCDs in low-income regions that reflect ongoing shifts in the global epidemiological transition. This study also delves into premature mortality patterns, exploring the interplay between age and causes of death and deepening our understanding of where targeted resources could be applied to further reduce preventable sources of mortality. We provide essential insights into global and regional health disparities, identifying locations in need of targeted interventions to address both communicable and non-communicable diseases. There is an ever-present need for strengthened health-care systems that are resilient to future pandemics and the shifting burden of disease, particularly among ageing populations in regions with high mortality rates. Robust estimates of causes of death are increasingly essential to inform health priorities and guide efforts toward achieving global health equity. The need for global collaboration to reduce preventable mortality is more important than ever, as shifting burdens of disease are affecting all nations, albeit at different paces and scales. Gates Foundation.
Global age-sex-specific all-cause mortality and life expectancy estimates for 204 countries and territories and 660 subnational locations, 1950–2023: a demographic analysis for the Global Burden of Disease Study 2023
Comprehensive, comparable, and timely estimates of demographic metrics—including life expectancy and age-specific mortality—are essential for evaluating, understanding, and addressing trends in population health. The COVID-19 pandemic highlighted the importance of timely and all-cause mortality estimates for being able to respond to changing trends in health outcomes, showing a strong need for demographic analysis tools that can produce all-cause mortality estimates more rapidly with more readily available all-age vital registration (VR) data. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is an ongoing research effort that quantifies human health by estimating a range of epidemiological quantities of interest across time, age, sex, location, cause, and risk. This study—part of the latest GBD release, GBD 2023—aims to provide new and updated estimates of all-cause mortality and life expectancy for 1950 to 2023 using a novel statistical model that accounts for complex correlation structures in demographic data across age and time. We used 24 025 data sources from VR, sample registration, surveys, censuses, and other sources to estimate all-cause mortality for males, females, and all sexes combined across 25 age groups in 204 countries and territories as well as 660 subnational units in 20 countries and territories, for the years 1950–2023. For the first time, we used complete birth history data for ages 5–14 years, age-specific sibling history data for ages 15–49 years, and age-specific mortality data from Health and Demographic Surveillance Systems. We developed a single statistical model that incorporates both parametric and non-parametric methods, referred to as OneMod, to produce estimates of all-cause mortality for each age-sex-location group. OneMod includes two main steps: a detailed regression analysis with a generalised linear modelling tool that accounts for age-specific covariate effects such as the Socio-demographic Index (SDI) and a population attributable fraction (PAF) for all risk factors combined; and a non-parametric analysis of residuals using a multivariate kernel regression model that smooths across age and time to adaptably follow trends in the data without overfitting. We calibrated asymptotic uncertainty estimates using Pearson residuals to produce 95% uncertainty intervals (UIs) and corresponding 1000 draws. Life expectancy was calculated from age-specific mortality rates with standard demographic methods. For each measure, 95% UIs were calculated with the 25th and 975th ordered values from a 1000-draw posterior distribution. In 2023, 60·1 million (95% UI 59·0–61·1) deaths occurred globally, of which 4·67 million (4·59–4·75) were in children younger than 5 years. Due to considerable population growth and ageing since 1950, the number of annual deaths globally increased by 35·2% (32·2–38·4) over the 1950–2023 study period, during which the global age-standardised all-cause mortality rate declined by 66·6% (65·8–67·3). Trends in age-specific mortality rates between 2011 and 2023 varied by age group and location, with the largest decline in under-5 mortality occurring in east Asia (67·7% decrease); the largest increases in mortality for those aged 5–14 years, 25–29 years, and 30–39 years occurring in high-income North America (11·5%, 31·7%, and 49·9%, respectively); and the largest increases in mortality for those aged 15–19 years and 20–24 years occurring in Eastern Europe (53·9% and 40·1%, respectively). We also identified higher than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 5–14 years (87·3% higher in GBD 2023 than GBD 2021 on average across countries and territories over the 1950–2021 period) and for females aged 15–29 years (61·2% higher), as well as lower than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 50 years and older (13·2% lower), reflecting advances in our modelling approach. Global life expectancy followed three distinct trends over the study period. First, between 1950 and 2019, there were considerable improvements, from 51·2 (50·6–51·7) years for females and 47·9 (47·4–48·4) years for males in 1950 to 76·3 (76·2–76·4) years for females and 71·4 (71·3–71·5) years for males in 2019. Second, this period was followed by a decrease in life expectancy during the COVID-19 pandemic, to 74·7 (74·6–74·8) years for females and 69·3 (69·2–69·4) years for males in 2021. Finally, the world experienced a period of post-pandemic recovery in 2022 and 2023, wherein life expectancy generally returned to pre-pandemic (2019) levels in 2023 (76·3 [76·0–76·6] years for females and 71·5 [71·2–71·8] years for males). 194 (95·1%) of 204 countries and territories experienced at least partial post-pandemic recovery in age-standardised mortality rates by 2023, with 61·8% (126 of 204) recovering to or falling below pre-pandemic levels. There were several mortality trajectories during and following the pandemic across countries and territories. Long-term mortality trends also varied considerably between age groups and locations, demonstrating the diverse landscape of health outcomes globally. This analysis identified several key differences in mortality trends from previous estimates, including higher rates of adolescent mortality, higher rates of young adult mortality in females, and lower rates of mortality in older age groups in much of sub-Saharan Africa. The findings also highlight stark differences across countries and territories in the timing and scale of changes in all-cause mortality trends during and following the COVID-19 pandemic (2020–23). Our estimates of evolving trends in mortality and life expectancy across locations, ages, sexes, and SDI levels in recent years as well as over the entire 1950–2023 study period provide crucial information for governments, policy makers, and the public to ensure that health-care systems, economies, and societies are prepared to address the world's health needs, particularly in populations with higher rates of mortality than previously known. The estimates from this study provide a robust framework for GBD and a valuable foundation for policy development, implementation, and evaluation around the world. Gates Foundation.
Iso-Osmolar Iodixanol Induces Less Increase in Circulating Endothelial Microparticles In Vivo and Less Endothelial Apoptosis In Vitro Compared with Low-Osmolar Iohexol
Background and Aims. There is no consensus on whether iodixanol is superior to iohexol. This study aimed to compare the effects of iodixanol and iohexol on circulating endothelial microparticles (EMPs) in stable coronary artery disease (CAD) patients with diabetes mellitus (DM), and also their cytotoxic effects on human umbilical vein endothelial cells (HUVECs) in vitro. Methods. 100 CAD patients with DM were randomly assigned to receive iso-osmolar contrast medium iodixanol (group I) or low-osmolar iohexol (group II) during coronary angioplasty. An additional 49 CAD patients without DM receiving iohexol were recruited as group III. Circulating CD31+/CD41a− EMPs, CD62E+ EMPs, and CD31+/CD41a+ platelet microparticles (PMPs) were determined by flow cytometry. In vitro, the cytotoxic effects of iodixanol and iohexol on HUVECs were determined. Results. Circulating CD31+/CD41a− EMPs and PMPs were significantly increased after angioplasty in all 3 groups, while CD62E+ EMPs significantly decreased in group I. CD31+/CD41a− EMPs and PMPs were significantly higher in group II than group I or III. In vitro, both contrast media induced EMP release and inhibited the viability and induced apoptosis of HUVECs, as well as increasing Bax and cleaved caspase-3 and decreasing Bcl-2. The above effects were less evident in iodixanol than in iohexol. Conclusions. Compared with iohexol, iodixanol induces less release of EMPs in both CAD patients with DM during angioplasty and in vitro HUVEC culture, which is associated with less pronounced proapoptotic effects of iodixanol on HUVECs. Clinical Study Registration Number. This study is registered with ChiCTR-TRC-14005183.
Efficacy and safety of Tafolecimab in Chinese patients with type 2 diabetes and hypercholesterolemia: a post-hoc analysis of pooled data from three phase 3 trials
Background This study evaluated the efficacy and safety of tafolecimab in patients with type 2 diabetes (T2D) and hypercholesterolemia by a post-hoc analysis of pooled data from three phase 3 trials. Methods Data from up to 12 weeks were analyzed to assess the effects of tafolecimab 450 mg every four weeks (Q4W) in patients with T2D and hypercholesterolemia. The primary endpoint was the percentage change in low-density lipoprotein cholesterol (LDL-C) levels from baseline to week 12. Secondary endpoints included the proportion of participants achieving LDL-C levels below 1.8 mmol/L at weeks 12, the proportion of patients achieving LDL-C ≥ 50% reduction and LDL-C < 1.4 mmol/L, as well as percentage changes from baseline to week 12 in non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B (apo B), lipoprotein(a) [Lp(a)], and triglyceride (TG) levels. Results The reduction in LDL-C from baseline was significantly greater in patients receiving tafolecimab than in those receiving placebo (estimated treatment difference: − 64.02%, 95% confidence interval: [− 68.08%, − 59.96%], P  < 0.0001). The proportion of patients achieving a reduction of over 50% and an absolute LDL-C value below 1.4 mmol/L was significantly higher in the tafolecimab group than that in the placebo group ( P  < 0.0001). Furthermore, a significantly greater proportion of patients in the tafolecimab group achieved LDL-C levels below 1.8 mmol/L at week 12 compared to the placebo group ( P  < 0.0001). The tafolecimab group also showed significant reductions in TG, non-HDL-C, apo B, and Lp(a) from baseline to week 12 compared to the placebo group (all P  < 0.001). The incidence of adverse events was generally similar between the two groups. Conclusion Tafolecimab 450 mg Q4W demonstrated a superior lipid-lowering efficacy and favorable safety profile compared to placebo. This suggests it could be a promising new treatment option for Chinese patients with T2D and hypercholesterolemia. Graphical abstract