Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
97
result(s) for
"Zhang, Fengqiu"
Sort by:
Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics
2020
Exosomes are small extracellular vesicles with diameters of 30-150 nm. In both physiological and pathological conditions, nearly all types of cells can release exosomes, which play important roles in cell communication and epigenetic regulation by transporting crucial protein and genetic materials such as miRNA, mRNA, and DNA. Consequently, exosome-based disease diagnosis and therapeutic methods have been intensively investigated. However, as in any natural science field, the in-depth investigation of exosomes relies heavily on technological advances. Historically, the two main technical hindrances that have restricted the basic and applied researches of exosomes include, first, how to simplify the extraction and improve the yield of exosomes and, second, how to effectively distinguish exosomes from other extracellular vesicles, especially functional microvesicles. Over the past few decades, although a standardized exosome isolation method has still not become available, a number of techniques have been established through exploration of the biochemical and physicochemical features of exosomes. In this work, by comprehensively analyzing the progresses in exosome separation strategies, we provide a panoramic view of current exosome isolation techniques, providing perspectives toward the development of novel approaches for high-efficient exosome isolation from various types of biological matrices. In addition, from the perspective of exosome-based diagnosis and therapeutics, we emphasize the issue of quantitative exosome and microvesicle separation.
Journal Article
The Cold Atmospheric Plasma Inhibits Cancer Proliferation Through Reducing Glutathione Synthesis
2025
(1) Objective: Cold atmospheric plasma (CAP) is a safe and effective alternative to radiotherapy for cancer treatment. Its anticancer effects are attributed to increased intracellular reactive oxygen species (ROS). Glutathione, a key antioxidant derived from glutamine, is critical for cell proliferation. This study investigated whether CAP-induced ROS elevation results from reduced glutamine–glutathione conversion and elucidates the underlying mechanisms. (2) Methods: Using esophageal squamous carcinoma cell models (Ec9706 and Eca109), we analyzed CAP’s effects on key enzymes in glutamine metabolism (Glutaminase 1 and γ-glutamylcysteine ligase) and proliferation-related genes (e.g., Retinoblastoma and Nuclear respiratory factor 2). Transcriptome analysis further explored molecular pathways involved in CAP-mediated anticancer effects. (3) Results: CAP reduced Glutaminase 1 and γ-glutamylcysteine ligase expression, leading to lower intracellular glutathione, higher ROS activity, and enhanced apoptosis. Transcriptome data confirmed CAP’s role in oxidation-reduction reactions and glutamine metabolism. (4) Conclusions: This study provides the first mechanistic insights into CAP’s anticancer effects by targeting glutamine metabolism. While based on in vitro assays, these findings guide the development of novel CAP therapies for currently incurable cancers.
Journal Article
Development of a CD63 Aptamer for Efficient Cancer Immunochemistry and Immunoaffinity-Based Exosome Isolation
by
Mao, Jun
,
Barrero, Roberto
,
Wang, Peng
in
Antibodies
,
aptamer
,
Aptamers, Nucleotide - chemistry
2020
CD63, a member of transmembrane-4-superfamily of tetraspanin proteins and a highly N-glycosylated type III lysosomal membrane protein, is known to regulate malignancy of various types of cancers such as melanoma and breast cancer and serves as a potential marker for cancer detection. Recently, its important role as a classic exosome marker was also emphasized. In this work, via using a magnetic bead-based competitive SELEX (systematic evolution of ligands by exponential enrichment) procedure and introducing a 0.5M NaCl as elution buffer, we identified two DNA aptamers (CD63-1 and CD63-2) with high affinity and specificity to CD63 protein (Kd = 38.71nM and 78.43, respectively). Furthermore, CD63-1 was found to be efficient in binding CD63 positive cells, including breast cancer MDA-MB-231 cells and CD63-overexpressed HEK293T cells, with a medium binding affinity (Kd~ 100 nM) as assessed by flow cytometry. When immunostaining assay was performed using clinical breast cancer biopsy, the CD63-1 aptamer demonstrated a comparable diagnostic efficacy for CD63 positive breast cancer with commercial antibodies. After developing a magnetic bead-based exosome immunoaffinity separation system using CD63-1 aptamer, it was found that this bead-based system could effectively isolate exosomes from both MDA-MB-231 and HT29 cell culture medium. Importantly, the introduction of the NaCl elution in this work enabled the isolation of native exosomes via a simple 0.5M NaCl incubation step. Based on these results, we firmly believe that the developed aptamers could be useful towards efficient isolation of native state exosomes from clinical samples and various theranostic applications for CD63-positive cancers.
Journal Article
Glutamine Deprivation Synergizes the Anticancer Effects of Cold Atmospheric Plasma on Esophageal Cancer Cells
2023
Esophageal cancer is a highly aggressive malignancy with a low response to standard anti-cancer therapies. There is an unmet need to develop new therapeutic strategies to improve the clinical outcomes of current treatments. Cold atmospheric plasma (CAP) is a promising approach for cancer treatment, and has displayed anticancer efficacy in multiple preclinical models. Recent studies have shown that the efficacy of CAP is positively correlated with intracellular reactive oxygen species (ROS) levels. This suggests that aggressively increasing intracellular ROS levels has the potential to further improve CAP-mediated anticancer efficacy. Glutamine plays an important role in cellular ROS scavenging after being converted to glutathione (GSH, a well-described antioxidant) under physiological conditions, so reducing intracellular glutamine levels seems to be a promising strategy. To test this hypothesis, we treated esophageal cancer cells with CAP while controlling the supply of glutamine. The results showed that glutamine did affect the anticancer effect of CAP, and the combination of CAP stimulation and glutamine deprivation significantly inhibited the proliferation of esophageal cancer cells compared to the control group (p < 0.05). Furthermore, flow cytometric analysis documented a significant increase in more than 10% in apoptosis and necrosis of esophageal cancer cells after this synergistic treatment compared to the control group (p < 0.05). Thus, these results provide the first direct evidence that the biological function of CAP can be modulated by glutamine levels and that combined CAP stimulation and glutamine deprivation represent a promising strategy for the future treatment of esophageal cancer.
Journal Article
CB1 enhanced the osteo/dentinogenic differentiation ability of periodontal ligament stem cells via p38 MAPK and JNK in an inflammatory environment
2019
Objectives Periodontitis is an inflammatory immune disease that causes periodontal tissue loss. Inflammatory immunity and bone metabolism are closely related to periodontitis. The cannabinoid receptor I (CB1) is an important constituent of the endocannabinoid system and participates in bone metabolism and inflammation tissue healing. It is unclear whether CB1 affects the mesenchymal stem cell (MSC) function involved in periodontal tissue regeneration. In this study, we revealed the role and mechanism of CB1 in the osteo/dentinogenic differentiation of periodontal ligament stem cells (PDLSCs) in an inflammatory environment. Materials and methods Alkaline phosphatase (ALP) activity, Alizarin Red staining, quantitative calcium analysis and osteo/dentinogenic markers were used to assess osteo/dentinogenic differentiation. Real‐time RT‐PCR and Western blotting were employed to detect gene expression. Results CB1 overexpression or CB1 agonist (10 µM R‐1 Meth) promoted the osteo/dentinogenic differentiation of PDLSCs. Deletion of CB1 or the application of CB1 antagonist (10 µM AM251) repressed the osteo/dentinogenic differentiation of PDLSCs. The activation of CB1 enhanced the TNF‐α‐ and INF‐γ‐impaired osteo/dentinogenic differentiation potential in PDLSCs. Moreover, CB1 activated p38 MAPK and JNK signalling and repressed PPAR‐γ and Erk1/2 signalling. Inhibition of JNK signalling could block CB1‐activated JNK and p38 MAPK signalling, while CB1 could activate p38 MAPK and JNK signalling, which was inhibited by TNF‐α and INF‐γ stimulation. Conclusions CB1 was able to enhance the osteo/dentinogenic differentiation ability of PDLSCs via p38 MAPK and JNK signalling in an inflammatory environment, which might be a potential target for periodontitis treatment.
Journal Article
Assessing B-Z DNA Transitions in Solutions via Infrared Spectroscopy
by
Huang, Qing
,
Duan, Mengmeng
,
Zhang, Fengqiu
in
Alzheimer's disease
,
Chirality
,
Circular Dichroism
2023
Z-DNA refers to the left-handed double-helix DNA that has attracted much attention because of its association with some specific biological functions. However, because of its low content and unstable conformation, Z-DNA is normally difficult to observe or identify. Up to now, there has been a lack of unified or standard analytical methods among diverse techniques for probing Z-DNA and its transformation conveniently. In this work, NaCl, MgCl2, and ethanol were utilized to induce d(GC)8 from B-DNA to Z-DNA in vitro, and Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of Z-DNA under different induction conditions. The structural changes during the transformation process were carefully examined, and the DNA chirality alterations were validated by the circular dichroism (CD) measurements. The Z-DNA characteristic signals in the 1450 cm−1–900 cm−1 region of the d(GC)8 infrared (IR) spectrum were observed, which include the peaks at 1320 cm−1, 1125 cm−1 and 925 cm−1, respectively. The intensity ratios of A1320/A970, A1125/A970, and A925/A970 increased with Z-DNA content in the transition process. Furthermore, compared with the CD spectra, the IR spectra showed higher sensitivity to Z-DNA, providing more information about the molecular structure change of DNA. Therefore, this study has established a more reliable FTIR analytical approach to assess BZ DNA conformational changes in solutions, which may help the understanding of the Z-DNA transition mechanism and promote the study of Z-DNA functions in biological systems.
Journal Article
The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition
2022
Background
Periodontitis is a chronic infectious disease leading to bone resorption and periodontal tissue disruption under inflammatory stimulation. The osteogenic differentiation ability of mesenchymal stem cells (MSCs) is impaired under the inflammatory environment, which limits the effect of treatment. The cannabinoid receptor I (CB1) is the main effector of the endogenous cannabinoid system (ECS), and our previous study verified that CB1 could enhance the osteo/dentinogenic differentiation of dental MSCs, which might be a target for alveolar bone regeneration. However, the effect of CB1 on the osteogenic differentiation of MSCs derived from bone remains unknown. In present study, we investigated the role and mechanism of CB1 on mitochondrial function and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) under inflammatory environment.
Methods
Alkaline phosphatase (ALP) activity, alizarin red staining, quantitative calcium analysis, and osteogenic markers were used to detect the osteogenic differentiation ability of BMSCs. Real-time RT-PCR and Western blot were used to detect the gene expression. Seahorse Cell Mito Stress Test was used to detect the oxygen consumption rate (OCR). JC-10 assay was used to determine the mitochondrial membrane potential (MMP).
Results
CB1 increased osteogenic differentiation potential and mitochondrial energy metabolism, including the OCR, MMP, and enhanced the expressions of
Nrf1
and
Nrf2
in hBMSCs without or with TNF-α or INF-γ stimulation. Then, the inhibitor of mitochondrial electron transport chain (ETC), rotenone (ROT), inhibited the osteogenic differentiation in hBMSCs, and CB1 could rescue ROT impaired osteogenic differentiation potentials of hBMSCs without or with TNF-α or INF-γ stimulation. Activation of ETC by Coenzyme Q10 (CoQ10) could restore the impaired osteogenic differentiation of hBMSCs by depletion of CB1 without or with TNF-α or INF-γ stimulation. Mechanismly, CB1 could activate the JNK signaling pathway, p38 MAPK signaling pathway, and inhibit the Erk1/2 signaling pathway.
Conclusions
The activating of CB1 enhanced the osteogenic differentiation by rescuing the mitochondrial metabolism function in hBMSCs under the inflammatory environment, suggesting that CB1 is a potential target for enhancing bone regeneration under the inflammatory environment.
Journal Article
Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche
by
Han, Nannan
,
Wang, Lijun
,
Fan, Zhipeng
in
Aggressive Periodontitis - therapy
,
Alkaline phosphatase
,
Animals
2017
Background
Periodontitis is a widespread infectious disease ultimately resulting in tooth loss. The number of mesenchymal stem cells (MSCs) in patients with periodontitis is decreased, and MSC functions are impaired. Rescuing the impaired function of MSCs in periodontitis is the key for treatment, especially in a manner independent of exogenous MSCs. Our previous study found that overexpressed insulin-like growth factor binding protein 5 (IGFBP5) could promote exogenous MSC-mediated periodontal tissue regeneration. Here, we investigate the role of IGFBP5 protein in MSCs and periodontal tissue regeneration independent of exogenous MSCs in an inflammatory niche.
Methods
TNFα was used to mimic the inflammatory niche. Lentiviral
IGFBP5
shRNA was used to silence
IGFBP5
and recombinant human IGFBP5 protein (rhIGFBP5) was used to stimulate the periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). The effects of IGFBP5 on PDLSCs were evaluated using the scratch-simulated wound migration, Transwell chemotaxis, alkaline phosphatase (ALP) activity, Alizarin red staining, Cell Counting Kit-8, Western blot, Real-time PCR, Co-IP and ChIP assays. The swine model of periodontitis was used to investigate the functions of IGFBP5 for periodontal regeneration and its anti-inflammation effect.
Results
We discovered that 0.5 ng/ml rhIGFBP5 protein enhanced the migration, chemotaxis, osteo/dentinogenic differentiation and cell proliferation of MSCs under the inflammatory condition. Moreover, 0.5 ng/ml rhIGFBP5 application could rescue the impaired functions of
IGFBP5
-silenced-MSCs in the inflammatory niche. Furthermore, local injection of rhIGFBP5 could promote periodontal tissue regeneration and relieve the local inflammation in a minipig model of periodontitis. Mechanistically, we found that
BCOR
negatively regulated the expression of
IGFBP5
in MSCs. BCOR formed a protein complex with histone demethylase KDM6B and raised histone K27 methylation in the
IGFBP5
promoter.
Conclusions
This study revealed that rhIGFBP5 could activate the functions of MSCs in an inflammatory niche, provided insight into the mechanism underlying the activated capacities of MSCs, and identified IGFBP5 as a potential cytokine for improving tissue regeneration and periodontitis treatment independent of exogenous MSCs and its potential application in dental clinic.
Journal Article
Risk prediction model of impacted supernumerary tooth-associated root resorption in children based on cone-beam computed tomography analysis: a case control study
2024
Background
External surface resorption is pressure-induced resorption and occurs on the external surface of the root, pressure exerted by impacted teeth, is common causes of external surface resorption. Predictive risk factors of impacted supernumerary tooth-associated root resorption (ISTARR) mentioned in this article include supernumerary teeth and patient factors. To investigate the risk factors of impacted supernumerary tooth-associated root resorption and predict the incidence of root resorption.
Methods
This restrospective study enrolled 324 patients with impacted supernumerary tooth. All Cone-Beam Computed Tomography (CBCT) data and patient information were divided into two groups (without tooth root resorption and with root resorption). CBCT images and patient information (age and gender) of 133 patients had adjacent tooth root resorption and 191 did not. seven variables were analysed using binary logistic regression.
Results
Individual analysis of potential risk factors showed that age, crown mesiodistal direction, root formation, and odontotheca of the impacted supernumerary tooth were associated significantly with ISTARR. Binary logistic regression showed that impacted supernumerary tooth with odontotheca (Odd Ratio = 2.926), the crown is in the middle (Odd Ratio = 1.446), located at the middle third of the adjacent tooth root (Odd Ratio = 1.614), complete root development (Odd Ratio = 1.334), and patient’s age (Odd Ratio = 1.261) were significantly associated with ISTARR risk.
Conclusions
The risk factors of root resorption can be detected and predicted early according to the features of supernumerary tooth and patient’s age. Still, more prospective studies with larger sample size are needed to validate the result.
Journal Article
Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells
2016
After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.
Journal Article