Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,711 result(s) for "Zhang, Hongliang"
Sort by:
Study on crack resistance of self-healing microcapsules in asphalt pavement by multi-scale method
Self-healing microcapsules in the asphalt pavement must be kept intact under vehicle load to ensure there is enough rejuvenator in capsules when cracks appear in asphalt pavement. In this paper, the crack resistance of self-healing microcapsules in asphalt pavement was evaluated. Firstly, an expanding multi-scale analysis was conducted based on proposed mesoscopic mechanical models with the aim to determine the mechanical parameters for the following contracting multi-scale analysis. Secondly, the periodic boundary condition was introduced for the contracting multi-scale analysis and the stress field of the capsule wall was obtained. Finally, the effects of the design parameters of the microcapsule on its crack resistance in asphalt pavement were investigated. The results showed that the incorporation of microcapsules has almost no effect on the elastic constants of the asphalt mixture. The core could be simplified as an approximately incompressible solid with the elastic constants determined by the proposed mesoscopic mechanical model. With the increase of the modulus of the capsule wall, the mean maximum tensile stress of the capsule wall increased from 0.372 MPa to 0.465 MPa, while with the decrease of the relative radius of the capsule core, the mean maximum tensile stress of the capsule wall increased from 0.349 MPa to 0.461 MPa. The change in the mean maximum tensile stress of the capsule wall caused by the change of capsule diameter was within 5%. The relative radius of the capsule core and the elastic modulus of capsule wall were two key parameters in capsule design. Besides, the microcapsules with the wall made of resin would not crack under the vehicle load before microcracks occurred in asphalt pavement.
Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies
Cadmium (Cd) accumulation in rice grain poses a serious threat to human health. While several transport systems have been reported, the complicity of rice Cd transport and accumulation indicates the necessity of identifying additional genes, especially those that are responsible for Cd accumulation divergence between indica and japonica rice subspecies. Here, we show that a gene, OsCd1, belonging to the major facilitator superfamily is involved in root Cd uptake and contributes to grain accumulation in rice. Natural variation in OsCd1 with a missense mutation Val449Asp is responsible for the divergence of rice grain Cd accumulation between indica and japonica. Near-isogenic line tests confirm that the indica variety carrying the japonica allele OsCd1 can reduce the grain Cd accumulation. Thus, the japonica allele OsCd1 may be useful for reducing grain Cd accumulation of indica rice cultivars through breeding.
Numerical simulation of single-jet impact cooling and double-jet impact cooling of hot-rolled L-shaped steel based on multiphase flow model
In this paper, numerical simulations of single-jet impingement cooling and double-jet impingement cooling processes of heated L-shaped steel are carried out using the VOF model. The SIMPLEC pressure-velocity coupling algorithm and realizable k-ε model are used for the solution. The effects of jet position, water flow, and jet distance in the single-jet condition are analyzed in the simulations. The distributions of impact pressure, turbulence kinetic energy, and Nusselt number were obtained, as well as the variation of the peak values of these three factors with the jet position, water flow, and jet distance. The water flow rate is 3-11 L/min, and the jet distance is 5-25 cm. The effect of the distance between the two nozzles on the jet cooling uniformity under the dual jet condition was also analyzed. The distance between the two nozzles was 15-45 mm. The results showed that the variation of water flow rate had a greater effect on the ability of jet cooling compared with the jet position and jet distance, and the heat transfer efficiency also increased gradually with the increase of water flow, but the increased rate of heat transfer efficiency decreased gradually. When the flow rate increased from 3 to 11 L/min, the maximum instantaneous cooling rates at 1/4 of the thickness of the short side upper side, long side upper side, short side lower side, and long side lower side positions increased by 38.9%, 48.5%, 48.2%, and 32.9%, respectively. To ensure that the jet does not shift, the jet distance should be less than or equal to 10 cm. In the case of the double jet, the nozzle distance is 1.5 cm, and the cooling uniformity of the cooling area between the two nozzles is better. The peak Nusselt number in the cooling area of each part under the double jet cooling condition increased by 5%, 9.4%, 10.2%, and 13.3%, respectively, compared with the single jet.
Test study and molecular dynamics simulation of Fe3+ modified TiO2 absorbing automobile exhaust
With the growth of the economy, the number of automobiles on the road is fast growing, resulting in substantial environmental pollution from exhaust gas emissions. In the automobile factory, some improvements have been achieved by constructing devices to degrade automobile exhaust. However, although most of the vehicle exhaust emissions have met the national standards, the exhaust gas is superimposed at the same time period due to the increasing traffic volume, making the exhaust emissions seriously reduce the air quality. Therefore, the scholars in the road field began to study new road materials to degrade vehicle exhaust, which has gradually become one of the effective ways to reduce automobile exhaust. Photocatalyst materials have been widely concerned because of their ability to oxidize harmful gases by solar photocatalysis. Yet, the effect has been not satisfactory because of the small light response range of photocatalyst material, which restricts the catalytic effect. In this study, this paper attempts to use Fe3+ to modify the TiO2, which is one of the main photocatalytic materials, to expand the range of light reaction band and to improve the degradation effect of automobile exhaust. The degradation effects of ordinary TiO2 and modified TiO2 on automobile exhaust were compared by test system in the laboratory. The results show that the modified TiO2 can effectively improve the performance of vehicle exhaust degradation. Moreover, the molecular dynamics method was used to establish the channel model of TiO2, and the dynamic process of automobile exhaust diffusion and absorption was simulated. The diffusion law and adsorption process of different types of automobile exhaust gas such as NO, CO, and CO2 in the TiO2 channel were analyzed from the molecular scale through the radial concentration distribution and adsorption energy.
Modeling biogenic and anthropogenic secondary organic aerosol in China
A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene oxidation was applied to study the spatial and temporal distribution of SOA in China in the entire year of 2013. Predicted organic carbon (OC), elemental carbon and volatile organic compounds agreed favorably with observations at several urban areas, although the high OC concentrations in wintertime in Beijing were under-predicted. Predicted summer SOA was generally higher (10–15 µg m−3) due to large contributions of isoprene (country average, 61 %), although the relative importance varies in different regions. Winter SOA was slightly lower and was mostly due to emissions of alkane and aromatic compounds (51 %). Contributions of monoterpene SOA was relatively constant (8–10 %). Overall, biogenic SOA accounted for approximately 75 % of total SOA in summer, 50–60 % in autumn and spring, and 24 % in winter. The Sichuan Basin had the highest predicted SOA concentrations in the country in all seasons, with hourly concentrations up to 50 µg m−3. Approximately half of the SOA in all seasons was due to the traditional equilibrium partitioning of semivolatile components followed by oligomerization, while the remaining SOA was mainly due to reactive surface uptake of isoprene epoxide (5–14 %), glyoxal (14–25 %) and methylglyoxal (23–28 %). Sensitivity analyses showed that formation of SOA from biogenic emissions was significantly enhanced due to anthropogenic emissions. Removing all anthropogenic emissions while keeping the biogenic emissions unchanged led to total SOA concentrations of less than 1 µg m−3, which suggests that manmade emissions facilitated biogenic SOA formation and controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.
Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion
The North China Plain (NCP) frequently experiences heavy haze pollution, particularly during wintertime. In winter 2015–2016, the NCP region suffered several extremely severe haze episodes with air pollution red alerts issued in many cities. We have investigated the sources and aerosol evolution processes of the severe pollution episodes in Handan, a typical industrialized city in the NCP region, using real-time measurements from an intensive field campaign during the winter of 2015–2016. The average (±1σ) concentration of submicron aerosol (PM1) during 3 December 2015–5 February 2016 was 187.6 (±137.5) µg m−3, with the hourly maximum reaching 700.8 µg m−3. Organic was the most abundant component, on average accounting for 45 % of total PM1 mass, followed by sulfate (15 %), nitrate (14 %), ammonium (12 %), chloride (9 %) and black carbon (BC, 5 %). Positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm identified four major organic aerosol (OA) sources, including traffic emissions represented by a hydrocarbon-like OA (HOA, 7 % of total OA), industrial and residential burning of coal represented by a coal combustion OA (CCOA, 29 % of total OA), open and domestic combustion of wood and crop residuals represented by a biomass burning OA (BBOA, 25 % of total OA), and formation of secondary OA (SOA) in the atmosphere represented by an oxygenated OA (OOA, 39 % of total OA). Emissions of primary OA (POA), which together accounted for 61 % of total OA and 27 % of PM1, are a major cause of air pollution during the winter. Our analysis further uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. However, the bulk composition of PM1 showed comparatively small variations between less polluted periods (daily PM2. 5  ≤  75 µg m−3) and severely polluted periods (daily PM2. 5  >  75 µg m−3), indicating relatively synchronous increases of all aerosol species during haze formation. The case study of a severe haze episode, which lasted 8 days starting with a steady buildup of aerosol pollution followed by a persistently high level of PM1 (326.7–700.8 µg m−3), revealed the significant influence of stagnant meteorological conditions which acerbate air pollution in the Handan region. The haze episode ended with a shift of wind which brought in cleaner air masses from the northwest of Handan and gradually reduced PM1 concentration to  <  50 µg m−3 after 12 h. Aqueous-phase reactions under higher relative humidity (RH) were found to significantly promote the production of secondary inorganic species (especially sulfate) but showed little influence on SOA.
Road Performance and Self-Healing Property of Bituminous Mixture Containing Urea-Formaldehyde Microcapsules
Urea-formaldehyde (UF) is a common shell material for self-healing microcapsules; however, the influence of urea-formaldehyde microcapsules (UFMs) on the road performance of bituminous mixtures and the sensitivity of their healing abilities remains unclear. In this paper, UFMs were prepared via in situ polymerization (ISP), followed by an investigation into the road performance of UFM self-healing bituminous mixtures through various tests, including wheel tracking, immersed Marshall, freeze-thaw splitting, low-temperature bending, and three-point bending fatigue tests. Subsequently, the impact of the damage degree, healing duration, and temperature on the self-healing property was discussed. The results indicated that incorporating 3 wt% UFMs into bitumen significantly improved the high-temperature stability and fatigue resistance of the bituminous mixture; for example, its dynamic stability and fatigue life could be increased by about 16.5% and 10%, respectively. However, it diminished the thermal crack resistance, as evidenced by decreases in bending tensile strength and strain by 3.7% and 10.1%, respectively. And it did not markedly improve the moisture susceptibility. Additionally, the maximum improvement observed in the healing rate was about 9%. Furthermore, the healing duration and temperature positively influenced the bituminous mixture's self-healing, whereas the degree of damage exerted a negative impact, with a relatively significant effect.
DsbA-L mediated renal tubulointerstitial fibrosis in UUO mice
Abstract Recent studies have reported that upregulation of disulfide-bond A oxidoreductase-like protein (DsbA-L) prevented lipid-induced renal injury in diabetic nephropathy (DN). However, the role and regulation of proximal tubular DsbA-L for renal tubulointerstitial fibrosis (TIF) remains unclear. In current study, we found that a proximal tubules-specific DsbA-L knockout mouse (PT-DsbA-L-KO) attenuated UUO-induced TIF, renal cell apoptosis and inflammation. Mechanistically, the DsbA-L interacted with Hsp90 in mitochondria of BUMPT cells which activated the signaling of Smad3 and p53 to produce connective tissue growth factor (CTGF) and then resulted in accumulation of ECM of BUMPT cells and mouse kidney fibroblasts. In addition, the progression of TIF caused by UUO, ischemic/reperfusion (I/R), aristolochic acid, and repeated acute low-dose cisplatin was also alleviated in PT-DsbA-L-KO mice via the activation of Hsp90 /Smad3 and p53/CTGF axis. Finally, the above molecular changes were verified in the kidney biopsies from patients with obstructive nephropathy (Ob). Together, these results suggest that DsbA-L in proximal tubular cells promotes TIF via activation of the Hsp90 /Smad3 and p53/CTGF axis.
Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice
MYB-type transcription factors (TFs) play essential roles in plant growth, development and respond to environmental stresses. Role of MYB-related TFs of rice in drought stress tolerance is not well documented. Here, we report the isolation and characterization of a novel MYB-related TF, OsMYB48-1, of rice. Expression of OsMYB48-1 was strongly induced by polyethylene glycol (PEG), abscisic acid (ABA), H2O2, and dehydration, while being slightly induced by high salinity and cold treatment. The OsMYB48-1 protein was localized in the nucleus with transactivation activity at the C terminus. Overexpression of OsMYB48-1 in rice significantly improved tolerance to simulated drought and salinity stresses caused by mannitol, PEG, and NaCl, respectively, and drought stress was caused by drying the soil. In contrast to wild type plants, the overexpression lines exhibited reduced rate of water loss, lower malondialdehyde (MDA) content and higher proline content under stress conditions. Moreover, overexpression plants were hypersensitive to ABA at both germination and post-germination stages and accumulated more endogenous ABA under drought stress conditions. Further studies demonstrated that overexpression of OsMYB48-1 could regulate the expression of some ABA biosynthesis genes (OsNCED4, OsNCED5), early signaling genes (OsPP2C68, OSRK1) and late responsive genes (RAB21, OsLEA3, RAB16C and RAB16D) under drought stress conditions. Collectively, these results suggested that OsMYB48-1 functions as a novel MYB-related TF which plays a positive role in drought and salinity tolerance by regulating stress-induced ABA synthesis.