Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
43,108 result(s) for "Zhang, X"
Sort by:
Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013
Long-term measurements of aerosol optical depths (AODs) at 440 nm and Ångström exponents (AE) between 440 and 870 nm made for CARSNET were compiled into a climatology of aerosol optical properties for China. Quality-assured monthly mean AODs are presented for 50 sites representing remote, rural, and urban areas. AODs were 0.14, 0.34, 0.42, 0.54, and 0.74 at remote stations, rural/desert regions, the Loess Plateau, central and eastern China, and urban sites, respectively, and the corresponding AE values were 0.97, 0.55, 0.82, 1.19, and 1.05. AODs increased from north to south, with low values (< 0.20) over the Tibetan Plateau and northwestern China and high AODs (> 0.60) in central and eastern China where industrial emissions and anthropogenic activities were likely sources. AODs were 0.20–0.40 in semi-arid and arid regions and some background areas in northern and northeastern China. AEs were > 1.20 over the southern reaches of the Yangtze River and at clean sites in northeastern China. In the northwestern deserts and industrial parts of northeast China, AEs were lower (< 0.80) compared with central and eastern regions. Dust events in spring, hygroscopic particle growth during summer, and biomass burning contribute the high AODs, especially in northern and eastern China. The AODs show decreasing trends from 2006 to 2009 but increased ~ 0.03 per year from 2009 to 2013.
Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols
From 2006 to 2007, the daily concentrations of major inorganic water-soluble constituents, mineral aerosol, organic carbon (OC) and elemental carbon (EC) in ambient PM10 samples were investigated from 16 urban, rural and remote sites in various regions of China, and were compared with global aerosol measurements. A large difference between urban and rural chemical species was found, normally with 1.5 to 2.5 factors higher in urban than in rural sites. Optically-scattering aerosols, such as sulfate (~16%), OC (~15%), nitrate (~7%), ammonium (~5%) and mineral aerosol (~35%) in most circumstance, are majorities of the total aerosols, indicating a dominant scattering feature of aerosols in China. Of the total OC, ~55%–60% can be attributed to the formation of the secondary organic carbon (SOC). The absorbing aerosol EC only accounts for ~3.5% of the total PM10. Seasonally, maximum concentrations of most aerosol species were found in winter while mineral aerosol peaks in spring. In addition to the regular seasonal maximum, secondary peaks were found for sulfate and ammonium in summer and for OC and EC in May and June. This can be considered as a typical seasonal pattern in various aerosol components in China. Aerosol acidity was normally neutral in most of urban areas, but becomes some acidic in rural areas. Based on the surface visibility observations from 681 meteorological stations in China between 1957 and 2005, four major haze areas are identified with similar visibility changes, namely, (1) Hua Bei Plain in N. China, and the Guanzhong Plain; (2) E. China with the main body in the Yangtze River Delta area; (3) S. China with most areas of Guangdong and the Pearl River Delta area; (4) The Si Chuan Basin in S.W. China. The degradation of visibility in these areas is linked with the emission changes and high PM concentrations. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric chemistry and weather-climate effects, and in validating atmospheric models.
Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 10 15 electronvolts) indicates the existence of the so-called PeVatrons—cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays 1 . The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2 ). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane 3 – 6 , unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators. Observations of γ-rays with energies up to 1.4 PeV find that 12 sources in the Galaxy are PeVatrons, one of which is the Crab Nebula.
Test of local realism via entangled ΛΛ¯ system
The non-locality of quantum correlations is a fundamental feature of quantum theory. The Bell inequality serves as a benchmark for distinguishing between predictions made by quantum theory and local hidden variable theory (LHVT). Recent advancements in photon-entanglement experiments have addressed potential loopholes and have observed significant violations of variants of Bell inequality. However, examples of Bell inequalities violation in high energy physics are scarce. In this study, we utilize (10.087  ± 0.044) × 10 9   J / ψ events collected with the BES-III detector at the BEPCII collider, performing non-local correlation tests using the entangled hyperon pairs. The massive-entangled Λ Λ ¯ systems are formed and decay through strong and weak interactions, respectively. Through measurements of the angular distribution of p p ¯ in J / ψ  →  γ η c and subsequent η c → Λ ( p π − ) Λ ¯ ( p ¯ π + ) cascade decays, a significant violation of LHVT predictions is observed. The exclusion of LHVT is found to be statistically significant at a level exceeding 5.2 σ in the testing of three Bell-like inequalities. While Bell inequalities have been violated several times—mostly in photonic systems—their violations within particle physics experiments are less explored. Here, the BESIII Collaboration showcases Bell-violating nonlocal correlations between entangled hyperon pairs.
Effects of surface wind speed decline on modeled hydrological conditions in China
Surface wind speed decline in China has been widely reported, but its effects on hydrology have not been fully evaluated to date. In this study, the effects of wind speed change on modeled hydrological conditions are investigated using the Variable Infiltration Capacity (VIC) hydrological model for China during the 1966–2011 period. Two model experiments, i.e., VIC simulations with the observed (EXP1) and detrended wind speed (EXP2), are performed over the major river basins in China. The differences between the two experiments are analyzed to assess the effects of wind speed decline. Results show that wind speed has decreased by 29% in China. The wind speed decline would have resulted in a decrease in evapotranspiration of 1–3% of mean annual evapotranspiration and an increase in runoff of 1–6% of mean annual runoff at most basins in China. The sensitivities of evapotranspiration and runoff changes to wind speed change are larger in humid areas than dry areas, while the sensitivity of soil moisture change to wind speed change is situation dependent. The wind speed decline would have offset the expansion of the drought area in China. It has contributed to reducing drought areas by 8.8% of the mean drought area (i.e., approximate 106 × 103 km2 out of 1.2 × 106 km2) over China. The reductions of soil moisture drought induced by wind speed decline are large (more than 5% of the mean drought area) in most basins, except in the Southwest and Pearl River basins.
Highly Pathogenic H5N1 Influenza Virus Infection in Migratory Birds
H5N1 avian influenza virus (AIV) has emerged as a pathogenic entity for a variety of species, including humans, in recent years. Here we report an outbreak among migratory birds on Lake Qinghaihu, China, in May and June 2005, in which more than a thousand birds were affected. Pancreatic necrosis and abnormal neurological symptoms were the major clinical features. Sequencing of the complete genomes of four H5N1 AIV strains revealed them to be reassortants related to a peregrine falcon isolate from Hong Kong and to have known highly pathogenic characteristics. Experimental animal infections reproduced typical highly pathogenic AIV infection symptoms and pathology.
A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet
We discuss results of a superposed epoch analysis of dipolarization fronts, rapid (δt < 30 s), high‐amplitude (δBz > 10 nT) increases in the northward magnetic field component, observed during six Time History of Events and Macroscale Interactions during Substorms (THEMIS) conjunction events. All six fronts propagated earthward; time delays at multiple probes were used to determine their propagation velocity. We define typical magnetic and electric field and plasma parameter variations during dipolarization front crossings and estimate their characteristic gradient scales. The study reveals (1) a rapid 50% decrease in plasma density and ion pressure, (2) a factor of 2–3 increase in high‐energy (30–200 keV) electron flux and electron temperature, and (3) transient enhancements of ∼5 mV/m in duskward and earthward electric field components. Gradient scales of magnetic field, plasma density, and particle flux were found to be comparable to the ion thermal gyroradius. Current densities associated with the Bz increase are, on average, 20 nA/m2, 5–7 times larger than the current density in the cross‐tail current sheet. Because j · E > 0, the dipolarization fronts are kinetic‐scale dissipative regions with Joule heating rates of 10% of the total bursty bulk flow energy. Key Points Superposed epoch analysis of THEMIS dipolarization front events Common pattern in field and particle variations during front crossings Particle energization and energetic plasma transport
A bimodal burst energy distribution of a repeating fast radio burst source
The event rate, energy distribution and time-domain behaviour of repeating fast radio bursts (FRBs) contain essential information regarding their physical nature and central engine, which are as yet unknown 1 , 2 . As the first precisely localized source, FRB 121102 (refs. 3 – 5 ) has been extensively observed and shows non-Poisson clustering of bursts over time and a power-law energy distribution 6 – 8 . However, the extent of the energy distribution towards the fainter end was not known. Here we report the detection of 1,652 independent bursts with a peak burst rate of 122 h −1 , in 59.5 hours spanning 47 days. A peak in the isotropic equivalent energy distribution is found to be approximately 4.8 × 10 37 erg at 1.25 GHz, below which the detection of bursts is suppressed. The burst energy distribution is bimodal, and well characterized by a combination of a log-normal function and a generalized Cauchy function. The large number of bursts in hour-long spans allows sensitive periodicity searches between 1 ms and 1,000 s. The non-detection of any periodicity or quasi-periodicity poses challenges for models involving a single rotating compact object. The high burst rate also implies that FRBs must be generated with a high radiative efficiency, disfavouring emission mechanisms with large energy requirements or contrived triggering conditions. For FRB 121102, 1,652 burst events are detected over 47 days, with a peak burst rate of 122 per hour, a bimodal burst rate energy distribution, and no periodicity or quasi-periodicity.
Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 CAWNET (China Atmosphere Watch Network) stations from 2006 to 2014. The highest particulate matter (PM) concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, on the Guanzhong Plain and the Huabei Plain (HBP). The second highest PM concentrations were observed in northeast China, followed by southern China. According to the latest air quality standards of China, 14 stations reached the PM10 standard, and only 7 stations, mainly rural and remote stations, reached the PM2.5 standard. The ratios of PM2.5 to PM10 showed a clear increasing trend from northern to southern China, because of the substantial contribution of coarse mineral aerosol in northern China. The ratios of PM1 to PM2.5 were higher than 80 % at most stations. PM concentrations tended to be highest in winter and lowest in summer at most stations, and mineral dust influenced the results in spring. A decreasing interannual trend was observed on the HBP and in southern China for the period 2006 to 2014, but an increasing trend occurred at some stations in northeast China. Bimodal and unimodal diurnal variation patterns were identified at urban stations. Both emissions and meteorological variations dominate the long-term PM concentration trend, while meteorological factors play a leading role in the short term.