Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
219 result(s) for "Zhang, Xinghong"
Sort by:
A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride
Our society is pursuing chemically recyclable polymers to accelerate the green revolution in plastics. Here, we develop a recyclable polyester library from the alternating copolymerization of aldehyde and cyclic anhydride. Although these two monomer sets have little or no thermodynamic driving force for homopolymerization, their copolymerization demonstrates the unexpected alternating characteristics. In addition to readily available monomers, the method is performed under mild conditions, uses common Lewis/Brønsted acids as catalysts, achieves the facile tuning of polyester structure using two distinct monomer sets, and yields 60 polyesters. Interestingly, the copolymerization exhibits the chemical reversibility attributed to its relatively low enthalpy, which makes the resulting polyesters perform closed-loop recycling to monomers at high temperatures. This study provides a modular, efficient, and facile synthesis of recyclable polyesters using sustainable monomers. Alternating copolymerization of cyclic anhydrides and epoxides is an interesting platform for the synthesis of polyesters from renewable resources, but the near irreversibility of the copolymerization makes it challenging to develop chemically recyclable polyesters with easy-to-tune structure. Here, the authors develop a recyclable polyester library from alternating copolymerization of aldehyde and cyclic anhydride.
Advances in ultra-high temperature ceramics, composites, and coatings
Ultra-high temperature ceramics (UHTCs) are generally referred to the carbides, nitrides, and borides of the transition metals, with the Group IVB compounds (Zr & Hf) and TaC as the main focus. The UHTCs are endowed with ultra-high melting points, excellent mechanical properties, and ablation resistance at elevated temperatures. These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles, particularly nozzles, leading edges, and engine components, etc. In addition to bulk UHTCs, UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics. Recently, highentropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials. This review presents the state of the art of processing approaches, microstructure design and properties of UHTCs from bulk materials to composites and coatings, as well as the future directions.
Chemically recyclable polyvinyl chloride-like plastics
Polyvinyl chloride (PVC) is the world’s third-most widely manufactured thermoplastic, but has the lowest recycling rate. The development of PVC-like plastics that can be depolymerized back to monomer contributes to a circular plastic economy, but has not been accessed. Here, we develop a series of chemically recyclable plastics from the reversible copolymerization of cyclic anhydride with chloral. The copolymerization is highly efficient through the anionic or cationic mechanism under mild conditions, yielding polyesters with tunable structure and properties from multiple commercial monomers. Notably, these polyesters manifest mechanical properties comparable to PVC and polystyrene. Meanwhile, such polyesters are flame-retardant like PVC due to high chloride content. Of significance, these polyesters can be depolymerized back to starting monomers at high temperatures owing to the reversibility of the copolymerization, leading to a circular economy. Overall, the readily available monomers, simple synthesis, advantageous performance, and practical recyclability make the polymers promising for applications. The development of PVC-like plastics that can be depolymerized back to monomer contributes to a circular plastic economy but remains understudied. Here, the authors develop a series of chemically recyclable plastics from the reversible copolymerization of cyclic anhydride with chloral.
Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring
The triboelectric nanogenerator (TENG) and its application as a sensor is a popular research subject. There is demand for self-powered, flexible sensors with high sensitivity and high power-output for the next generation of consumer electronics. In this study, a 300 mm × 300 mm carbon nanotube (CNT)-doped porous PDMS film was successfully fabricated wherein the CNT influenced the micropore structure. A self-powered TENG tactile sensor was established according to triboelectric theory. The CNT-doped porous TENG showed a voltage output seven times higher than undoped porous TENG and 16 times higher than TENG with pure PDMS, respectively. The TENG successfully acquired human motion signals, breath signals, and heartbeat signals during a sleep monitoring experiment. The results presented here may provide an effective approach for fabricating large-scale and low-cost flexible TENG sensors.
Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction
Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels’ applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.
Precise placement of thioester bonds into sequence-controlled polymers containing ABAC-type units
The precise placement of thioester bonds into sequence-controlled polymers remains a grand challenge. Here, we demonstrate the versatile synthesis of sequence-controlled polymers from the step polymerization of cyclic thioanhydrides ( A ), diacrylates ( B ), and diols/diamines ( C ). In addition to easily accessible diverse monomers, the method is metal-free/catalyst-free, atom-economical, and wide in monomer scope, yielding 107 polymers with >90% yields and weight-average molecular weights of up to 175.4 kDa. The obtained polymers contain ABAC -type repeating units and precisely distributed in-chain thioester and ester (and amide) groups. The chemoselectivity of the polymerization is revealed by density functional theory calculations. The polymer library exhibits considerably tunable performance: glass-transition temperatures of −36–72 °C, melting temperatures of 43–133 °C, degradability, thermoplastics/elastomers, and thioester-based functions. This study furnishes a facile method to precisely incorporate thioester bonds into sequence-controlled polymers. The precise placement of thioester bonds into sequence-controlled polymers remains challenging. Here, the authors demonstrate the versatile synthesis of sequence-controlled polymers from the step polymerization of cyclic thioanhydrides, diacrylates, and diols/diamines.
Cyclic Polyesters with Closed‐Loop Recyclability from A New Chemically Reversible Alternating Copolymerization
Polyesters with both cyclic topology and chemical recyclability are attractive. Here, the alternating copolymerization of cyclic anhydride and o‐phthalaldehyde to synthesize a series of cyclic and recyclable polyesters are reported for the first time. Besides readily available monomers, the copolymerization is carried out at 25 °C, uses common Lewis/Brønsted acids as catalysts, and achieves high yields within 1 h. The resulting polyesters possess well‐defined alternating sequences, high‐purity cyclic topology, and tunable structures using distinct two monomer sets. Of interest, the copolymerization manifests obvious chemical reversibility as revealed by kinetic and thermodynamic studies, making the unprecedented polyesters easy to recycle to their distinct two monomers in a closed loop at high temperatures. This work furnishes a facile and efficient method to synthesize cyclic polyesters with closed‐loop recyclability. The cationic copolymerization of cyclic anhydride and o‐phthalaldehyde demonstrates alternating and chemical reversible characteristics, yielding novel polyesters with alternating sequence, high‐fidelity cyclic topology, closed‐loop chemical recyclability, and easy‐to‐tune structure.
Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review
Photocatalytic optical fibers are promising materials for degrading organic pollutants in wastewater, owing to their low light mass transfer resistance, their high efficiency of light utilization, and their inhibition of photocatalyst deactivation. In particular, optical fibers have been applied for the removal of phenols, dyes, organic acids and antibiotics in wastewater. Yet, optical fibers have limitations such as poor photocatalytic activity and low sustainability. Here, we review the principle and use of photocatalytic optical fibers, including photocatalytic quartz and plastic optical fibers, for the degradation of the organic pollutants in water. We present methods to enhance photocatalytic activity, light utilization efficiency, and adhesion strength by using TiO2-based photocatalytic coatings.
Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis
Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola , and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola , concerning 950 different growth conditions, were tested using Biolog PM plates 1–10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25–30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.
Synthesis and characterization of ultralong SiC nanowires with unique optical properties, excellent thermal stability and flexible nanomechanical properties
Several-millimeter long SiC nanowires (NWs) with unique optical properties, excellent thermal stability and flexible nanomechanical properties were synthesized using a simple method with silicon and phenolic resin as the raw materials. The SiC NWs displayed special optical properties that were attributed to their large size and Al-doping. They displayed broad green emission at 527.8 nm (2.35 eV) and purple emission concentrated at 438.9 nm (2.83 eV), in contrast to the other results, and the synthesized SiC NWs could also remain relatively stable in air up to 1000 °C indicating excellent thermal stability. The Young’s moduli of the SiC NWs with a wide range of NW diameters (215–400 nm) were measured using an in situ nanoindentation method with a hybrid scanning electron microscopy/scanning probe microscopy (SEM/SPM) system for the first time. The results suggested that the values of the Young’s modulus of the SiC NWs showed no clear size dependence, and the corresponding Young’s moduli of the SiC NWs with diameters of 215 nm, 320 nm, and 400 nm were approximately 559.1 GPa, 540.0 GPa and 576.5 GPa, respectively. These findings provide value and guidance for studying and understanding the properties of SiC nanomaterials and for expanding their possible applications.