Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
144 result(s) for "Zhang, Xuxia"
Sort by:
Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca 2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity. The roles of lysosomes in uranium (U) decorporation and detoxification remain to be elucidated. Here, the authors demonstrate that TRPML1 activation is an attractive therapeutic strategy to induce lysosomal exocytosis and biogenesis for the treatment of U-induced nephrotoxicity.
Characterization of Mycobacterium tuberculosis strains in Beijing, China: drug susceptibility phenotypes and Beijing genotype family transmission
Background The most prevalent strains of Mycobacterium tuberculosis ( M.tb ) in Beijing belong to the Beijing genotype family. The influence of Beijing genotype prevalence on the development of drug resistance, and the association of infection with Beijing genotype M.tb with population characteristics, in Beijing, however, are still unclear. Methods In this retrospective study, 1189 isolates were subjected to drug susceptibility testing (DST) and molecular epidemiological analysis, and differences in the percentage of drug resistance between Beijing and non-Beijing genotype strains were compared. The association between the occurrence of drug resistance and the prevalence of Beijing genotype M.tb was analyzed using statistical methods. Results The Beijing genotype family was the dominant genotype (83.3%) among the 1189  M.tb isolates. Beijing genotype M.tb strains were more likely to spread among males [ p  = 0.018, OR (95% CI):1.127(1.004–1.264)] and people in the 45–64 age group [ p  = 0.016, OR (95% CI): 1.438 (1.027–2.015)]. On the contrary, non-Beijing genotype M.tb strains were more probably disseminated among the over 65 [ p  = 0.005, OR (95% CI):0.653 (0.474–0.9)] and non-resident population [ p  = 0.035, OR (95% CI):1.185(0.985–1.427)]. DST results showed that 849 (71.4%) strains were fully sensitive to first-line drugs, while 340 (28.6%) strains were resistant to at least one drug, and 9% (107/1189) were MDR-TB. The frequency of INH-resistance among Beijing genotype strains was significantly lower than that among non-Beijing genotype strains ( p  = 0.032). In addition, the Beijing genotype family readily formed clusters. Conclusions Our findings indicate that male and middle-aged people were more probably be infected by Beijing genotype M.tb , older people and non-residents were more probably be infected by non-Beijing genotype M.tb . The high percentage of resistance to INH occurring in non-Beijing genotype strains suggested that non-Beijing genotype strains should be given much more interest in Beijing.
Deciphering the possible role of MmpL7 efflux pump in SQ109 resistance in Mycobacterium tuberculosis
Background SQ109 is a promising candidate drug for the treatment of patients with drug-resistant tuberculosis (DR-TB). The purpose of this study was to investigate the activity of SQ109 against clinical isolates of Mycobacterium tuberculosis (MTB) from patients with multidrug-resistant TB (MDR-TB) and pre-extensively drug-resistant TB (pre-XDR-TB), and to explore new drug-resistant mechanisms of SQ109. Methods We evaluated the in vitro activity of SQ109 against clinical isolates from patients with MDR-TB and pre-XDR-TB using minimal inhibitory concentration (MIC) assay. The drug-resistant gene, mmpL3 of SQ109-resistant strains was sequenced, and a quantitative real-time PCR assay was used to analyze 28 efflux pump genes in SQ109-resistant strains without mmpL3 mutations. The role of candidate efflux pumps mmpL5 and mmpL7 on the MIC of SQ109 was evaluated using recombinantly cloned MmpL5 and MmpL7 expressed in Mycobacterium smegmatis . Results The MIC 90 , MIC 95 and MIC 99 values of SQ109 for 225 clinical isolates of MTB were 0.25 mg/L, 0.5 mg/L and 1.0 mg/L, respectively. Among the pre-XDR strains, six showed resistance to SQ109 despite the absence of gene mutations in mmpL3 . In six resistant pre-XDR strains, the MIC of SQ109 decreased with the use of an efflux pump inhibitor, and there was significant upregulation of mmpL5 and mmpL7 in two strains after exposure to SQ109. The presence of MmpL7 in Mycobacterium smegmatis resulted in decreased susceptibility to SQ109, with the MIC increasing from 16 mg/L to 32 mg/L. Conclusions Our data demonstrated that SQ109 exhibited excellent levels of in vitro activity against MTB. MmpL7 may be a potential gene for MTB resistance to SQ109, providing a useful target for detecting SQ109 resistance in MTB.
In vitro susceptibility of nontuberculous mycobacteria in China
Objectives This study aimed to measure the prevalence of resistance to antimicrobial agents, and explore the risk factors associated with drug resistance by using nontuberculous Mycobacteria (NTM) isolates from China. Methods A total of 335 NTM isolates were included in our analysis. Broth dilution method was used to determine in vitro drug susceptibility of NTM isolates. Results Clarithromycin (CLA) was the most potent drug for Mycobacterium intracellulare (MI). The resistance rate of 244 MI isolates to CLA was 21%, yielding a minimum inhibitory concentrations (MIC) 50 and MIC 90 of 8 and 64 mg/L, respectively. 51% of 244 MI isolates exhibited resistance to amikacin (AMK). For 91 Mycobacterium abscessus complex (MABC) isolates, 6 (7%) and 49 (54%) isolates were categorized as resistant to CLA at day 3 and 14, respectively. The resistance rate to CLA for Mycobacterium abscessus subspecies abscessus (MAA) was dramatically higher than that for Mycobacterium abscessus subspecies massiliense (MAM). Additionally, the percentage of patients presenting fever in the CLA-susceptible group was significantly higher than that in the CLA-resistant group. Conclusions Our data demonstrate that approximate one fifth of MI isolates are resistant to CLA. We have identified a higher proportion of CLA-resistant MAA isolates than MAM. The patients caused by CLA-resistant MI are at low risk for presenting with fever relative to CLA-susceptible group.
The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing
The predominant prevalent Mycobacterium tuberculosis ( M . tb ) lineage was the Beijing genotype family in Beijing. There has been no systematic study on the association between drug resistance and Beijing genotype. Here we collected 268  M . tb strains, analyzed the background information and the bacteriological characteristics. The mean age of the cases was 40.12 years; male patients were almost three times than female patients. After genotyping analyzation, 81.7% (219/268) strains were categorized as Beijing genotype; no significant difference was observed between Beijing and non-Beijing genotype in gender, age and treatment history. Drug susceptibility testing (DST) analyzation demonstrated that 172 (64.2%) strains were fully sensitive to all drugs (Isoniazid, Rifampin, Streptomycin, and Ethambutol), while 96 (35.8%) strains were resistant to at least one of the drugs. Beijing genotype strains exhibited a significantly higher clustering rate. However, no significant association relationship was observed between drug resistance and Beijing genotype family. The study provided insights into the genotype diversity and revealed that the frequencies of drug-resistance of Beijing genotype strains.It would be helpful for the establishment of the efficient tuberculosis (TB) prevention and control strategy in Beijing.
Antigen-specific chemokine profiles as biomarkers for detecting Mycobacterium tuberculosis infection
Latent tuberculosis (TB) infection can progress to active TB, which perpetuates community transmission that undermines global TB control efforts. Clinically, interferon-γ release assays (IGRAs) are commonly used for active TB case detection. However, low IGRA sensitivity rates lead to false-negative results for a high proportion of active TB cases, thus highlighting IGRA ineffectiveness in differentiating MTB-infected individuals from healthy individuals. Participants enrolled at Beijing Chest Hospital from May 2020-April 2022 were assigned to healthy control (HC), LTBI, IGRA-positive TB, and IGRA-negative TB groups. Screening cohort MTB antigen-specific blood plasma chemokine concentrations were measured using Luminex xMAP assays then were verified via testing of validation cohort samples. A total of 302 individuals meeting study inclusion criteria were assigned to screening and validation cohorts. Testing revealed significant differences in blood plasma levels of CXCL9, CXCL10, CXCL16, CXCL21, CCL1, CCL19, CCL27, TNF-α, and IL-4 between IGRA-negative TB and HC groups. Levels of CXCL9, CXCL10, IL-2, and CCL8 biomarkers were predictive for active TB, as reflected by AUC values of ≥0.9. CXCL9-based enzyme-linked immunosorbent assay sensitivity and specificity rates were 95.9% (95%CI: 91.7-98.3) and 100.0% (92.7-100.0), respectively. Statistically similar AUC values were obtained for CXCL9 and CXCL9-CXCL10 assays, thus demonstrating that combined analysis of CXCL10 and CXCL9 levels did not improve active TB diagnostic performance. The MTB antigen stimulation-based CXCL9 assay may compensate for low IGRA diagnostic accuracy when used to diagnose IGRA-negative active TB cases and thus is an accurate and sensitive alternative to IGRAs for detecting MTB infection.
Diagnostic accuracy of oral swab for detection of pulmonary tuberculosis: a systematic review and meta-analysis
Tuberculosis (TB) remains a significant concern in terms of public health, necessitating the timely and accurate diagnosis to impede its advancement. The utilization of oral swab analysis (OSA) presents a promising approach for diagnosing pulmonary TB by identifying (MTB) within oral epithelial cells. Due to disparities in the diagnostic performance of OSA reported in the original studies, we conducted a meticulous meta-analysis to comprehensively assess the diagnostic efficacy of OSA in pulmonary TB. We conducted a comprehensive investigation across multiple databases, namely PubMed, Cochrane Library, Embase, Web of Science, ClinicalTrials.gov, Chinese BioMedical Literature Database (CBM), China National Knowledge Infrastructure Database (CNKI), and Wanfang China Science and Technology Journal Database to identify relevant studies. Out search query utilized the following keywords: oral swab, buccal swab, tongue swab, tuberculosis, and TB. Subsequently, we employed STATA 16.0 to compute the combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio for both the overall and subgroup analyses. Our findings indicated that OSA has a combined sensitivity of 0.67 and specificity of 0.95 in individuals with pulmonary TB. Subgroup analysis further revealed that among adult individuals with pulmonary TB, the sensitivity and specificity of OSA were 0.73 and 0.93, respectively. In HIV-negative individuals with pulmonary TB, the sensitivity and specificity were 0.68 and 0.98, respectively. The performance of OSA in detecting pulmonary TB correlated with the bacteria load in sputum. Additionally, the sensitivity for diagnosing pulmonary TB using tongue specimens was higher (0.75, 95% CI: 0.65-0.83) compared to cheek specimens (0.52, 95% CI: 0.34-0.70), while both types of specimens demonstrated high specificity. To conclude, oral swabs serve as a promising alternative for diagnosing pulmonary TB, especially in adult patients. In addition, tongue swabs yield better sensitivity than cheek swabs to identify pulmonary TB patients. identifier: CRD42023421357.
Prevalence of extensively drug-resistant tuberculosis in a Chinese multidrug-resistant TB cohort after redefinition
Objectives Recently, the definition of extensively drug-resistant TB (XDR-TB) has been revised. In this study, we conducted a descriptive and retrospective study to determine the prevalence of XDR-TB in a Chinese multidrug-resistant TB (MDR-TB) cohort. Methods Broth microdilution method was performed to determine in vitro susceptibilities of Mycobacterium tuberculosis (MTB) isolates to (FQs), bedaquiline (BDQ) and linezolid (LZD). The putative drug target genes conferring drug resistance were screened by DNA sequencing. Results A total of 425 MDR-TB isolates were included from 13 pilots in China. LZD and BDQ resistance were noted in 30 (7.1%) and 10 (2.4%) isolates. On the basis of latest definitions, 114 (26.8%) were MDR-TB, 282 (66.4%) were pre-XDR-TB, and 29 (6.8%) were XDR-TB. Among 311 FQ-resistant isolates, 265 harbored genetic mutations within QRDRs. The most common mutations were observed at codon 94 of gyrA , accounting for 47.2% of FQ-resistant MTB isolates. Only mutations within the Rv06 78 gene were found to confer BDQ resistance in our cohort, conferring 40.0% of BDQ resistance. For LZD resistance, 53.3% of LZD-resistant isolates carried genetic mutations in rplC or 23S rRNA. The most frequent mutation was Cys154Arg in the rplC gene. In addition, we recorded two MDR-TB patients with resistance to both BDQ and LZD, of which one patient experienced continuous positive culture of MTB despite inclusion of efficacious moxifloxacin. Conclusion Our results demonstrate that the low prevalence of XDR-TB holds great promise for MDR-TB treatment with WHO-endorsed regimens containing BDQ-LZD combination, whereas the high prevalence of FQ-resistance in MDR-TB patients warrants national attention.
Aluminum Removal from Rare Earth Chloride Solution through Regulated Hydrolysis via Electrochemical Method
Due to the coexistence of Al3+ and RE3+ and their similar properties, the separation of aluminum from rare earths is difficult. In this study, selective precipitation was used to separate aluminum from rare earth chloride solution via electrochemical regulated hydrolysis. By controlling the current density and electrolytic time, the rate of hydroxyl ion production was regulated, and the selective separation of rare earth and aluminum was realized according to the different precipitation sequences. By altering the temperature, current density, pH value, and other parameters, the separation performance of aluminum from rare earth in mixed rare earth chloride systems was systematically investigated. The removal rate of aluminum reached 88.35%, and the loss rate of rare earth was only 5.99% under optimized conditions. Compared with traditional neutralization hydrolysis, the new process showed higher efficiency and lower rare earth loss rate. Furthermore, a kinetic analysis of aluminum precipitation revealed that the reaction adhered to pseudo-first order kinetics. Additionally, the precipitate obtained via separation and filtration was amorphous alumina hydroxide with a small amount of rare earth attached. No reagent was consumed for the new process, which was more efficient and cleaner, providing a new idea for removing aluminum impurities from rare earth solutions.
Surveillance of close contacts of patients with infectious tuberculosis: a prospective cohort study
Background A long-term follow-up of close contacts to monitor their infection status is essential to formulate a promising screening strategy. The study aimed to assess the dynamics of tuberculosis (TB) infection using Interferon-γ release assay (IGRA) and determine risk factors associated with TB infection. Methods Definite TB patients were interviewed and their household contacts were screened for TB infection by IGRA during 12-month longitudinal investigation. Results We included in our analyses 184 household contacts of 92 index TB patients. 87 individuals (47.3%) in contact group progressed to TB infection, of whom 86 developed into IGRA positive within 24 weeks. Close contacts with a higher age and comorbidities are easier to exhibit TB infection. Analysis showed that risk factors for becoming IGRA-positive individuals included residence, older age, comorbidities, BCG scar and high bacterial load. Contacts with BCG scar had a lower IGRA-positive rate. Conclusion IGRA conversion generally occurs within 24 weeks after exposure. The TB transmission happens since subclinical TB stage and the presence of BCG scar is an independent protective factor reducing risk of TB infection among close contacts. Repeated IGRA tests are sensible to conducted among close contacts at 24 weeks after exposure to identify the IGRA-positive individuals.