Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,004 result(s) for "Zhang, Yuwen"
Sort by:
Investigating the Impact of Smart Tourism Technologies on Tourists’ Experiences
The adoption and implementation of smart technologies in tourism destinations and visitor attractions to enrich tourists’ experiences and improve their satisfaction has become a new trend. The main purpose of this study was to explore the influence of the dimensions/attributes of smart technologies on tourism experience in the context of visitor attractions and related outcomes (satisfaction and post-consumption behavioral intentions). The Liangzhu Museum, Zhejiang Province, China, was used as the study area, and data were collected from 486 visitors and analyzed with a regression model. The results show that accessibility and interactivity affect smart technology-enhanced experiences. Tourists’ perceived value of smart technologies is significantly related to their satisfaction. Smart technology positively impacts word-of-mouth recommendations, revisit intention, and willingness to pay a price premium. Therefore, visitor attractions could improve tourists’ experiences by designing better infrastructure and services that incorporate the key dimensions of smart technologies, which would also improve their competitiveness.
Phylogeny and Functions of LOB Domain Proteins in Plants
Lateral organ boundaries (LOB) domain (LBD) genes, a gene family encoding plant-specific transcription factors, play important roles in plant growth and development. At present, though there have been a number of genome-wide analyses on LBD gene families and functional studies on individual LBD proteins, the diverse functions of LBD family members still confuse researchers and an effective strategy is required to summarize their functional diversity. To further integrate and improve our understanding of the phylogenetic classification, functional characteristics and regulatory mechanisms of LBD proteins, we review and discuss the functional characteristics of LBD proteins according to their classifications under a phylogenetic framework. It is proved that this strategy is effective in the anatomy of diverse functions of LBD family members. Additionally, by phylogenetic analysis, one monocot-specific and one eudicot-specific subclade of LBD proteins were found and their biological significance in monocot and eudicot development were also discussed separately. The review will help us better understand the functional diversity of LBD proteins and facilitate further studies on this plant-specific transcription factor family.
Altered amino acid levels in young hypopituitarism: impact of NAFLD and insulin resistance
Elevated concentrations of amino acids (AAs) are commonly observed in patients with nonalcoholic fatty liver disease (NAFLD). Individuals with hypopituitarism (HP) are at a heightened risk of developing NAFLD due to factors such as visceral obesity, increased insulin resistance (IR), and disturbances in lipid metabolism. However, the changes in AAs concentrations associated with HP remain poorly understood. Therefore, our study aimed to investigate whether individuals with HP, who were not receiving growth hormone replacement therapy (GHRT), exhibited altered AAs compared to controls (CTs), and whether these AAs were associated with IR, the presence of NAFLD, and the Metabolic Syndrome (MetS) score. The AAs profiles of 133 young males with HP (age: 24.5 ± 5.9; 57 with NAFLD and 76 without NAFLD) and 90 age and BMI-matched CTs were analyzed using untargeted metabolomics. The results revealed that most AAs were found to be elevated in subjects with HPs compared to CTs. Glutamate, glutamine, norleucine, and branched-chain amino acids (BCAAs) (leucine and valine) were correlated with the homeostasis model assessment of insulin resistance (HOMA-IR), with glutamate and norleucine showing independent linkage. Glutamate and proline levels were specifically associated with MetS score, while alanine and proline linked to NAFLD. Given that elevated glutamate and BCAAs levels have higher prevalence of NAFLD, we hypothesized that the changes in AAs observed in HPs may be attributed to the impact of NAFLD and IR.
Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents
•Cortical free water reflects properties of the cortical cellular morphology.•Relationship between the free water and CTH might reflect the cortical cellular status.•Combination of free water and macroscopic cortical features could potentially be used to reflect the hierarchal structures of healthy brain. We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Sodium para-aminosalicylic acid inhibits manganese-induced NLRP3 inflammasome-dependent pyroptosis by inhibiting NF-κB pathway activation and oxidative stress
Background The activation of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent pyroptosis has been shown to play a vital role in the pathology of manganese (Mn)-induced neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has a positive effect on the treatment of manganism. However, the mechanism is still unclear. We hypothesized that PAS-Na might act through NLRP3. Methods The microglial cell line BV2 and male Sprague-Dawley rats were used to investigate the impacts of PAS-Na on Mn-induced NLRP3 inflammasome-dependent pyroptosis. The related protein of the NF-κB pathway and NLRP3-inflammasome-dependent pyroptosis was detected by western blot. The reactive oxygen species and mitochondrial membrane potential were detected by immunofluorescence staining and flow cytometry. The activation of microglia and the gasdermin D (GSDMD) were detected by immunofluorescence staining. Results Our results showed that Mn treatment induced oxidative stress and activated the NF-κB pathway by increasing the phosphorylation of p65 and IkB-α in BV2 cells and in the basal ganglia of rats. PAS-Na could alleviate Mn-induced oxidative stress damage by inhibiting ROS generation, increasing mitochondrial membrane potential and ATP levels, thereby reducing the phosphorylation of p65 and IkB-α. Besides, Mn treatment could activate the NLRP3 pathway and promote the secretion of IL-18 and IL-1β, mediating pyroptosis in BV2 cells and in the basal ganglia and hippocampus of rats. But an inhibitor of NF-κb (JSH-23) treatment could significantly reduce LDH release, the expression of NLRP3 and Cleaved CASP1 protein and IL-1β and IL-18 mRNA level in BV2 cells. Interestingly, the effect of PAS-Na treatment in Mn-treated BV2 cells is similar to those of JSH-23. Besides, immunofluorescence results showed that PAS-Na reduced the increase number of activated microglia, which stained positively for GSDMD. Conclusion PAS-Na antagonized Mn-induced NLRP3 inflammasome dependent pyroptosis through inhibiting NF-κB pathway activation and oxidative stress.
Deciphering aquaporin-4’s influence on perivascular diffusion indices using DTI in rat stroke studies
This study aimed to evaluate the dynamic changes of the perivascular space diffusion index (index for diffusivity along the perivascular space, ALPS) and its relationship with aquaporin 4 (AQP4) polarization after cerebral ischemia in rats. Rats were subjected to transient middle cerebral artery occlusion (tMCAO) and evaluated at 1, 3, 7, 14, and 28 days post-ischemia using diffusion tensor imaging (DTI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI). The ALPS index was determined from imaging data, focusing on periventricular and corpus callosum/cingulate regions. Brains were analyzed for AQP4 and glial fibrillary acidic protein (GFAP) via immunofluorescence. The results showed that ischemic rats displayed reduced ALPS indexes, particularly on the ipsilateral side, with an initial decrease at day 1 and subsequent recovery by days 14 and 28. AQP4 polarization in the non-glial scar area around the infarction followed a similar pattern, demonstrating that there was a concordant trend between the ALPS index and AQP4 polarization status. In conclusion, the ALPS index can reflect changes in AQP4-mediated glymphatic pathway function, suggesting a significant decline in the hyperacute phase and a notable recovery in the early chronic phase, which may have implications for stroke therapeutic strategies.
Structure and genome editing of type I-B CRISPR-Cas
Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp . PCC 6714 ( Syn ) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3 + T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells. Here the authors present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition and local conformational changes of the effector complex upon R-loop formation.
Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids
The effect of the molecular layering at liquid–solid interface on the thermal conductivity of the nanofluid is investigated by an equilibrium molecular dynamics simulation. By tracking the position of the nanoparticle and the liquid atoms around the spherical nanoparticle, it was found that a thin layer of liquid is formed at the interface between the nanoparticle and liquid; this thin layer will move with the Brownian motion of the nanoparticle. Through the analysis of the density distribution of the liquid near the nanoparticle, it is found that more argon atoms are attracted to form the layer around the nanoparticle when the diameter of the nanoparticle is larger, and therefore lead to the more significant enhancement of the thermal conductivity of the nanofluid.
Analysis of the multiple drivers of vegetation cover evolution in the Taihangshan-Yanshan region
The Taihangshan-Yanshan region (TYR) is an important ecological barrier area for Beijing-Tianjin-Hebei, and the effectiveness of its ecological restoration and protection is of great significance to the ecological security pattern of North China. Based on the FVC data from 2000 to 2021, residual analysis, parametric optimal geodetector technique (OPGD) and multi-scale geographically weighted regression analysis (MGWR) were used to clarify the the multivariate driving mechanism of the evolution of FVC in the TYR. Results show that: (1) FVC changes in the TYR show a slowly fluctuating upward trend, with an average growth rate of 0.02/10a, and a spatial pattern of \"high in the northwest and low in the southeast\"; more than half of the FVC increased during the 22-year period. (2) The results of residual analysis showed that the effects of temperature and precipitation on FVC were very limited, and a considerable proportion (80.80% and 76.78%) of the improved and degraded areas were influenced by other factors. (3) The results of OPGD showed that the main influencing factors of the spatial differentiation of FVC included evapotranspiration, surface temperature, land use type, nighttime light intensity, soil type, and vegetation type (q > 0.2); The explanatory rates of the two-factor interactions were greater than those of the single factor, which showed either nonlinear enhancement or bifactorial enhancement, among which, the interaction of evapotranspiration with mean air and surface temperature has the strongest effect on the spatial and temporal evolution of FVC (q = 0.75). Surface temperature between 4.98 and 10.4 °C, evapotranspiration between 638 and 762 mm/a, and nighttime light between 1.96 and 7.78 lm/m 2 favoured an increase in vegetation cover, and vegetation developed on lysimetric soils was more inclined to be of high cover. (4) The correlation between each variable and FVC showed different performance, GDP, elevation, slope and FVC showed significant positive correlation in most regions, while population size, urban population proportion, GDP proportion of primary and secondary industries, and nighttime light intensity all showed negative correlation with FVC to different degrees. The results can provide data for formulating regional environmental protection and restoration policies.
Climate Change Mitigation Through Forest Quality Enhancement and Socio-Ecological Symbiosis: Evidence from China
This paper, based on an analysis of the environmental Kuznets curve (EKC) for forest quality and carbon emissions in economic systems, explores effective pathways for carbon emission reduction through the symbiosis between forest quality and economic growth. The findings suggest that, without considering forest quality, the overall EKC for China presents an inverted U shape. However, when forest quality is integrated into the model, the overall EKC demonstrates an upward trend, indicating a positive impact on reducing carbon emissions. Geographically, the EKCs in the northwest, northeast, and central-southern regions display an inverted U shape, while those in the north and southwest show a U shape, and the eastern regions exhibit an approximately linear upward curve, reflecting regional disparities in carbon emission trends and environmental management. The synergy between forest quality and economic development significantly contributes to climate change mitigation, with enhancing the carbon emission suppression coefficient of both forest quality and economic systems being the most effective pathway for carbon reduction. The main contribution of this paper lies in the evaluation for forest quality based on entropy weights, and the application of a symbiotic model to analyze the EKC of carbon emissions in relation to forest quality and climate resilience.