Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
90
result(s) for
"Zhang, Zuoyi"
Sort by:
Testing the feasibility of multi-modular design in an HTR-PM nuclear plant
2025
Small modular reactors are the nuclear fission reactors with electric power output less than 300 MWe. To apply the enhanced safety of small modular reactors to build large-scale nuclear plants with any desired power ratings, the multi-modular scheme is recommended to be adopted, where multiple reactor modules are utilized to drive the common load equipment for power generation or cogeneration. The feasibility of multi-modular scheme is not verified until several plant-wide tests were carried out recently on the high temperature gas-cooled reactor pebble-bed module (HTR-PM) nuclear plant. The HTR-PM plant consists of two inherently safe nuclear reactors of 200 MWt, adopts the scheme of two reactor modules driving a common steam turbine, and operates commercially since December 6, 2023. In this paper, the responses of key process variables of HTR-PM plant in the tests of power ramping, turbine trip and reactor trip are provided, and the related multi-modular coordinated control method is also proposed. This result manifests the feasibility of multi-modular scheme practically, and shows the promising future of building large-scale nuclear plants with a system of small modular reactors.
Small modular reactors are compact nuclear reactors that can be combined to create large-scale power plants. Here, authors demonstrate the practical feasibility of a multi-modular design in the HTR-PM nuclear plant, showing effective coordinated control of multiple reactor modules driving a common steam turbine for power generation.
Journal Article
Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control
by
Dong, Yujie
,
Dong, Zhe
,
Zhu, Yunlong
in
advanced control
,
Control theory
,
Design and construction
2023
Nuclear plant modeling and control is an important subject in nuclear power engineering, giving the dynamic model from process mechanics and/or operational data as well as guaranteeing satisfactory transient and steady-state operational performance by well-designed plant control laws. With the fast development of small modular reactors (SMRs) and in the context of massive integration of intermittent renewables, it is required to operate the nuclear plants more reliably, efficiently, flexibly and smartly, motivating the recent exciting progress in nuclear plant modeling and control. In this paper, the main progress during the last several years in dynamical modeling and control of nuclear plants is reviewed. The requirement of nuclear plant operation to the subject of modeling and control is first given. By categorizing the results to the aspects of mechanism-based, data-based and hybrid modeling methods, the advances in dynamical modeling are then given, where the modeling of SMR plants, learning-based modeling and state-observers are typical hot topics. In addition, from the directions of intelligent control, nonlinear control, online control optimization and multimodular coordinated control, the advanced results in nuclear plant control methods are introduced, where the hot topics include fuzzy logic inference, neural-network control, reinforcement learning, sliding mode, feedback linearization, passivation and decoupling. Based upon the review of recent progress, the future directions in nuclear plant modeling and control are finally given.
Journal Article
A Finite-Time Differentiator with Application to Nuclear Reactor Inverse Period Measurement
by
Dong, Yujie
,
Dong, Zhe
,
Huang, Xiaojin
in
Control systems
,
differentiator
,
Equipment and supplies
2022
The measurement of the growth rate, or the so-called inverse period, of a nuclear reactor is crucial for safety monitoring and control purposes. Due to the inevitable statistical fluctuation of neutron flux at low power-levels, it is difficult to precisely estimate the inverse period from the pulse counting data in the source range. Motivated by the equivalence of the measurement of inverse period and the differentiation of the logarithm of pulse count, a new differentiator is proposed, which is finite-time convergent with a bounded steady estimation error. The feasibility of this newly-built finite-time differentiator is verified by numerical simulation. Then, based on the pulse count data recorded during the startup of a test reactor, the differentiator is used to estimate the inverse period and its derivative, as well as the period and the reactivity of the reactor. The results show that the differentiator is capable of providing a satisfactory estimation of signal derivatives under strong noise.
Journal Article
Oxidation Experiments and Kinetics Analysis of Nuclear Graphite ET-10 by Gas Analysis and Microstructure Observation
2021
Nuclear graphite can be used in fission and fusion systems due to its excellent nuclear performance and mechanical properties where the ability of oxidation resistance is usually concerned. Although the excellent performance of new graphite ET-10 was revealed by previous experiments regarding the accident conditions of a fission reactor, further studies are needed to oxidize the graphite under the conditions recommended by the ASTM D7542 standard. A test facility was designed and developed to oxidize the cylindrical specimen with a 10 L/min airflow. According to oxidation rates and microstructures of specimens, the chemical kinetics-controlled regime was determined as 675–750 °C, where the activation energy was obtained as 172.52 kJ/mol. The experiment results revealed the excellent ability of graphite ET-10 for oxidation resistance with lower oxidation rates and longer oxidation times compared with some mainstream graphite. The main reasons are the low contents of some impurities and the binder and the low active surface area due to the non-impregnation baking process undertaken to produce graphite with coal tar pitch coke. It should be noted that the evolution of oxidation behavior at the bottom part of the specimen (facing the airflow) was quicker than that at the upper part of the specimen. We also suggest that the abundance of oxygen supply and the good linearity of the Arrhenius plot are prerequisites of the chemical kinetics-controlled regime rather than sufficient conditions.
Journal Article
Passivity-Based Power-Level Control of Nuclear Reactors
2022
Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance.
Journal Article
Application of unsupervised deep learning algorithms for identification of specific clusters of chronic cough patients from EMR data
2022
Background
Chronic cough affects approximately 10% of adults. The lack of ICD codes for chronic cough makes it challenging to apply supervised learning methods to predict the characteristics of chronic cough patients, thereby requiring the identification of chronic cough patients by other mechanisms. We developed a deep clustering algorithm with auto-encoder embedding (DCAE) to identify clusters of chronic cough patients based on data from a large cohort of 264,146 patients from the Electronic Medical Records (EMR) system. We constructed features using the diagnosis within the EMR, then built a clustering-oriented loss function directly on embedded features of the deep autoencoder to jointly perform feature refinement and cluster assignment. Lastly, we performed statistical analysis on the identified clusters to characterize the chronic cough patients compared to the non-chronic cough patients.
Results
The experimental results show that the DCAE model generated three chronic cough clusters and one non-chronic cough patient cluster. We found various diagnoses, medications, and lab tests highly associated with chronic cough patients by comparing the chronic cough cluster with the non-chronic cough cluster. Comparison of chronic cough clusters demonstrated that certain combinations of medications and diagnoses characterize some chronic cough clusters.
Conclusions
To the best of our knowledge, this study is the first to test the potential of unsupervised deep learning methods for chronic cough investigation, which also shows a great advantage over existing algorithms for patient data clustering.
Journal Article
Initial uptake, time to treatment, and real-world effectiveness of all-oral direct-acting antivirals for hepatitis C virus infection in the United States: A retrospective cohort analysis
2019
Data on initiation and utilization of direct-acting antiviral therapies for hepatitis C virus infection in the United States are limited. This study evaluated treatment initiation, time to treatment, and real-world effectiveness of direct-acting antiviral therapy in individuals with hepatitis C virus infection treated during the first 2 years of availability of all-oral direct-acting antiviral therapies.
A retrospective cohort analysis was undertaken using electronic medical records and chart review abstraction of hepatitis C virus-infected individuals aged >18 years diagnosed with chronic hepatitis C virus infection between January 1, 2014, and December 31, 2015 from the Indiana University Health database.
Eight hundred thirty people initiated direct-acting antiviral therapy during the 2-year observation window. The estimated incidence of treatment initiation was 8.8%±0.34% at the end of year 1 and 15.0%±0.5% at the end of year 2. Median time to initiating therapy was 300 days. Using a Cox regression analysis, positive predictors of treatment initiation included age (hazard ratio, 1.008), prior hepatitis C virus treatment (1.74), cirrhosis (2.64), and history of liver transplant (1.5). History of drug abuse (0.43), high baseline alanine aminotransferase levels (0.79), hepatitis B virus infection (0.41), and self-pay (0.39) were negatively associated with treatment initiation. In the evaluable population (n = 423), 83.9% (95% confidence interval, 80.1-87.3%) of people achieved sustained virologic response.
In the early years of the direct-acting antiviral era, <10% of people diagnosed with chronic hepatitis C virus infection received direct-acting antiviral treatment; median time to treatment initiation was 300 days. Future analyses should evaluate time to treatment initiation among those with less advanced fibrosis.
Journal Article
Combining Dual Fluidized Bed and High-Temperature Gas-Cooled Reactor for Co-Producing Hydrogen and Synthetic Natural Gas by Biomass Gasification
2021
Biomass gasification to produce burnable gas now attracts an increasing interest for production flexibility in the renewable energy system. However, the biomass gasification technology using dual fluidized bed which is most suitable for burnable gas production still encounters problems of low production efficiency and high production cost. Here, we proposed a large-scale biomass gasification system to combine dual fluidized bed and high-temperature gas-cooled reactor (HTR) for co-production of hydrogen and synthetic natural gas (SNG). The design of high-temperature gas-cooled reactor biomass gasification (HTR-BiGas) consists of one steam supply module to heat inlet steam of the gasifier by HTR and ten biomass gasification modules to co-produce 2000 MWth hydrogen and SNG by gasifying the unpretreated biomass. Software for calculating the mass and energy balances of biomass gasification was developed and validated by the experiment results on the Gothenburg biomass gasification plant. The preliminary economic evaluation showed that HTR-BiGas and the other two designs, electric auxiliary heating and increasing recirculated product gas, are economically comparative with present mainstream production techniques and the imported natural gas in China. HTR-BiGas is the best, with production costs of hydrogen and SNG around 1.6$/kg and 0.43 $ /Nm3, respectively. These designs mainly benefit from proper production efficiencies with low fuel-related costs. Compared with HTR-BiGas, electric auxiliary heating is hurt by the higher electric charge and the shortcoming of increasing recirculated product gas is its lower total production. Future works to improve the efficiency and economy of HTR-BiGas and to construct related facilities are introduced.
Journal Article
Automatic Generation Control of Nuclear Heating Reactor Power Plants
by
Jiang, Di
,
Zhang, Yajun
,
Dong, Zhe
in
active disturbance rejection control (ADRC)
,
automatic generation control (AGC)
,
Design
2018
A nuclear heating reactor (NHR) is a typical integral pressurized water reactor (iPWR) with advanced design features such as an integral primary circuit, self-pressurization, full-power-range natural circulation, and hydraulic control rods. Through adjusting its electric power output according to the variation of demand, NHR power plants can be adopted to stablize the fluctuation of grid frequency caused by the intermittent nature of renewable generation, which is useful for deepening the penetration of renewables. The flexibility of an NHR power plant relies on the automatic generation control (AGC) function of the plant coordination control system, whose central is the AGC law. In this paper, the plant control system with AGC function is designed for NHR plants, where the AGC is realized based on the stabilizers of grid frequency and main steam pressure. Then, the AGC problem is transferred to the disturbance attenuation problem of a second-order dynamic system, and an active disturbance attenuation control (ADRC), which is just the addition of a feedback control given by a proportional‒integral (PI) law and a feedforward control driven by a disturbance observer (DO), is then proposed. Finally, this ADRC is applied to realize the AGC function for NHR-200II reactor power plant, and numerical simulation results show the implementation feasibility and satisfactory performance.
Journal Article
Study of the Oxidation Behavior of Fine-Grained Graphite ET-10 by Combining X-ray μCT with Mercury Porosimetry
2022
By combining X-ray micro-computed tomography with mercury porosimetry, the evolution of the oxygen supply, porous structure, mass loss and oxidized compositions were investigated to characterize the oxidation behavior of fine-grained graphite ET-10, regarding the geometry of the specimen and its oxidation temperature. Here, the porous structure and the gas flows out of and into the porous structure were comprehensively compared for two kinds of specimens—large pure graphite (D = H = 25.4 mm), oxidized at a test facility based on ASTM D7542, and small partially SiC-coated graphite (D ≈ 1 mm and H = 1.95 mm), oxidized in the bottom section of a U-type tube. The fine grains and large geometry resulted in small pores and long flow distances, which exhausted the oxygen in the small stream to the interior of the specimen, making its oxidation deviate from the kinetics-controlled regime. In addition, the well-known three-regime theory was reasonably reinterpreted regarding the oxidation of different compositions, binders and fillers. The kinetics-controlled uniform oxidation mainly oxidizing binders is restricted by their limited contents, while the rate of surface-dominated oxidation increases continuously via the consumption of more fillers. Furthermore, we proposed a new design for the test facility used for the oxidation experiment, wherein a partially shielded millimeter specimen can be oxidized in the long straight bottom section of a U-tube, and this will be discussed further in related future studies.
Journal Article