Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
511
result(s) for
"Zhao, Chenglong"
Sort by:
Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries
2020
Metallic lithium is a promising anode to increase the energy density of rechargeable lithium batteries. Despite extensive efforts, detrimental reactivity of lithium metal with electrolytes and uncontrolled dendrite growth remain challenging interconnected issues hindering highly reversible Li-metal batteries. Herein, we report a rationally designed amide-based electrolyte based on the desired interface products. This amide electrolyte achieves a high average Coulombic efficiency during cycling, resulting in an outstanding capacity retention with a 3.5 mAh cm
−2
high-mass-loaded LiNi
0.8
Co
0.1
Mn
0.1
O
2
cathode. The interface reactions with the amide electrolyte lead to the predicted solid electrolyte interface species, having favorable properties such as high ionic conductivity and high stability.
Operando
monitoring the lithium spatial distribution reveals that the highly reversible behavior is related to denser deposition as well as top-down stripping, which decreases the formation of porous deposits and inactive lithium, providing new insights for the development of interface chemistries for metal batteries.
Interface chemistry is essential for highly reversible lithium-metal batteries. Here the authors investigate amide-based electrolyte that lead to desirable interface species, resulting in dense Li-metal plating and top-down Li-metal stripping, responsible for the highly reversible cycling.
Journal Article
Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing
by
Zhang, Liang
,
Bachman, Hunter
,
Zhuang, Songlin
in
3-D printers
,
631/61/2049
,
639/624/1107/510
2021
After half a billion years of evolution, arthropods have developed sophisticated compound eyes with extraordinary visual capabilities that have inspired the development of artificial compound eyes. However, the limited 2D nature of most traditional fabrication techniques makes it challenging to directly replicate these natural systems. Here, we present a biomimetic apposition compound eye fabricated using a microfluidic-assisted 3D-printing technique. Each microlens is connected to the bottom planar surface of the eye via intracorporal, zero-crosstalk refractive-index-matched waveguides to mimic the rhabdoms of a natural eye. Full-colour wide-angle panoramic views and position tracking of a point source are realized by placing the fabricated eye directly on top of a commercial imaging sensor. As a biomimetic analogue to naturally occurring compound eyes, the eye’s full-colour 3D to 2D mapping capability has the potential to enable a wide variety of applications from improving endoscopic imaging to enhancing machine vision for facilitating human–robot interactions.
Insect-like biomimetic compound eyes have many technological applications. Here, the authors present a facile fabrication scheme involving microfluidics assisted 3D printing that permits to completely separate design, optimization and construction of optical and sensor components.
Journal Article
High entropy liquid electrolytes for lithium batteries
2023
High-entropy alloys/compounds have large configurational entropy by introducing multiple components, showing improved functional properties that exceed those of conventional materials. However, how increasing entropy impacts the thermodynamic/kinetic properties in liquids that are ambiguous. Here we show this strategy in liquid electrolytes for rechargeable lithium batteries, demonstrating the substantial impact of raising the entropy of electrolytes by introducing multiple salts. Unlike all liquid electrolytes so far reported, the participation of several anionic groups in this electrolyte induces a larger diversity in solvation structures, unexpectedly decreasing solvation strengths between lithium ions and solvents/anions, facilitating lithium-ion diffusivity and the formation of stable interphase passivation layers. In comparison to the single-salt electrolytes, a low-concentration dimethyl ether electrolyte with four salts shows an enhanced cycling stability and rate capability. These findings, rationalized by the fundamental relationship between entropy-dominated solvation structures and ion transport, bring forward high-entropy electrolytes as a composition-rich and unexplored space for lithium batteries and beyond.
Electrolytes, function as an ion conducting membrane between battery electrodes, are essential for rechargeable batteries. Here, the authors report high-entropy liquid electrolytes and reveal substantial impact of the increasing entropy on lithium-ion solvation structures for highly reversible lithium batteries.
Journal Article
18FAlF-NOTA-FAPI-04 PET/CT uptake in metastatic lesions on PET/CT imaging might distinguish different pathological types of lung cancer
2022
PurposeHeterogeneity is found in the tumor microenvironment among different pathological types of tumors. Radionuclide-labeled fibroblast-activation-protein inhibitor (FAPI), as an important tracer for non-invasive imaging of the tumor microenvironment, can be used to evaluate the expression of FAP in cancer-associated fibroblasts, macrophages, and tumor cells. Our aim was to explore the ability of [18F]AlF-NOTA-FAPI-04 positron emission tomography (PET)/computed tomography (CT) to distinguish different types of lung cancer by evaluating the uptake of this tracer in primary and metastatic lesions.MethodsWe prospectively enrolled 61 patients with histopathologically proven primary lung cancer with metastases. PET/CT scanning was performed before any antitumor therapy and 1 h after injection of 235.10 ± 3.89 MBq of [18F]AlF-NOTA-FAPI-04. Maximum standard uptake values (SUVmax) were calculated for comparison among primary and metastatic lesions. Immunohistochemical staining for FAP was performed on tumor specimens.ResultsSixty-one patients with adenocarcinoma (ADC, n = 30), squamous cell carcinoma (SCC, n = 17), and small cell lung cancer (SCLC, n = 14) were enrolled in this study, and 61 primary tumors and 199 metastases were evaluated. No difference in [18F]AlF-NOTA-FAPI-04 uptake was observed among primary ADC, SCC, and SCLC tumors (P = 0.198). Additionally, no difference in uptake was found between primary and metastatic lesions of lung cancer with the same pathological type (P > 0.05). However, uptake did differ among metastases of differing pathological types (P < 0.001). The SUVmax of metastatic lymph nodes was highest for SCC, followed by ADC and then SCLC (P < 0.001). The SUVmax of bone metastases also was highest for SCC, followed by ADC and SCLC (P < 0.05), but no difference was observed between ADC and SCLC. The SUVmax of metastases in other organs was higher in SCC cases than in ADC cases but did not differ between SCC and SCLC or ADC and SCLC. Bone metastases exhibited higher uptake than those of lymph nodes and other organs in SCC and ADC (P < 0.05) but not in SCLC. Positive correlations were found between FAPI uptake and FAP expression in surgical plus biopsy specimens (r = 0.439, P = 0.012) and surgical specimens (r = 0.938, P = 0.005).Conclusion[18F]AlF-NOTA-FAPI-04 PET/CT imaging revealed differences in FAP expression in metastases of lung cancer, with the highest expression specifically in bone metastases, and thus, may be valuable for distinguishing different pathological types of lung cancer.
Journal Article
Ni-based cathode materials for Na-ion batteries
by
Chen, Liquan
,
Hu, Yong-Sheng
,
Zhao, Chenglong
in
Atomic/Molecular Structure and Spectra
,
Batteries
,
Biomedicine
2019
Na-ion batteries (NIBs) have attracted significant attention owing to Na being an abundant resource that is uniformly distributed in the Earth’s crust. Several 3d transition metal (TM) ions have been thoroughly investigated as charge compensators in single or multiple composition systems to enhance the electrochemical performance of cathodes for the practical applications. In this review, the composition-structure-property relationship of Ni-based cathodes has been reviewed as a design perspective for NIB’s cathodes. The typical Ni-based cathode materials have been systematically summarized and comparatively analyzed, and it is demonstrated that Ni ions can be used to provide charge compensation. Moreover, Ni-based cathodes present high reversible capacity owing to the multi-electron redox reactions and suitable redox potential of Ni-ions redox. However, considering the abundance, cost, and hygroscopic properties of Ni element, the content of 0.15–0.35 per formula can be optimal for enhancing the performance of cathodes. Lastly, further perspectives on designing Ni-containing cathodes, including Ni-rich layered cathodes, have been discussed, which could promote the practical applications of NIBs for grid-scale energy storage in future.
Journal Article
Designing lithium halide solid electrolytes
2024
All-solid-state lithium batteries have attracted widespread attention for next-generation energy storage, potentially providing enhanced safety and cycling stability. The performance of such batteries relies on solid electrolyte materials; hence many structures/phases are being investigated with increasing compositional complexity. Among the various solid electrolytes, lithium halides show promising ionic conductivity and cathode compatibility, however, there are no effective guidelines when moving toward complex compositions that go beyond
ab
-initio modeling. Here, we show that ionic potential, the ratio of charge number and ion radius, can effectively capture the key interactions within halide materials, making it possible to guide the design of the representative crystal structures. This is demonstrated by the preparation of a family of complex layered halides that combine an enhanced conductivity with a favorable isometric morphology, induced by the high configurational entropy. This work provides insights into the characteristics of complex halide phases and presents a methodology for designing solid materials.
The pursuit of all-solid-state batteries has motivated advancements in materials design. Here, the authors present a methodology demonstrating that ionic potential effectively captures crucial interactions within halide materials, guiding the design of the new materials with enhanced performance.
Journal Article
Building aqueous K-ion batteries for energy storage
2019
Aqueous K-ion batteries (AKIBs) are promising candidates for grid-scale energy storage due to their inherent safety and low cost. However, full AKIBs have not yet been reported due to the limited availability of suitable electrodes and electrolytes. Here we propose an AKIB system consisting of an Fe-substituted Mn-rich Prussian blue K
x
Fe
y
Mn
1 −
y
[Fe(CN)
6
]
w
·
z
H
2
O cathode, an organic 3,4,9,10-perylenetetracarboxylic diimide anode and a 22 M KCF
3
SO
3
water-in-salt electrolyte. The cathode achieves 70% capacity retention at 100
C
and a lifespan of over 10,000 cycles due to the mitigation of phase transitions by Fe substitution. Meanwhile, the electrolyte can help decrease the dissolution of both electrodes owing to the lack of free water. The AKIB exhibits a high energy density of 80 Wh kg
−1
and can operate well at rates of 0.1–20
C
and over a wide temperature range (−20 to 60 °C). We believe that our demonstration could pave the way for practical applications of AKIBs for grid-scale energy storage.
Intensive efforts are underway towards developing battery-based grid-scale storage technologies. Here, the authors report an aqueous K-ion battery that offers many attractive advantages over various battery alternatives.
Journal Article
Mechanical Structure Design and Motion Simulation Analysis of a Lower Limb Exoskeleton Rehabilitation Robot Based on Human–Machine Integration
2025
Population aging is an inevitable trend in contemporary society, and the application of technologies such as human–machine interaction, assistive healthcare, and robotics in daily service sectors continues to increase. The lower limb exoskeleton rehabilitation robot has great potential in areas such as enhancing human physical functions, rehabilitation training, and assisting the elderly and disabled. This paper integrates the structural characteristics of the human lower limb, motion mechanics, and gait features to design a biomimetic exoskeleton structure and proposes a human–machine integrated lower limb exoskeleton rehabilitation robot. Human gait data are collected using the Optitrack optical 3D motion capture system. SolidWorks 3D modeling software Version 2021 is used to create a virtual prototype of the exoskeleton, and kinematic analysis is performed using the standard Denavit–Hartenberg (D-H) parameter method. Kinematic simulations are carried out using the Matlab Robotic Toolbox Version R2018a with the derived D-H parameters. A physical prototype was fabricated and tested to verify the validity of the structural design and gait parameters. A controller based on BP fuzzy neural network PID control is designed to ensure the stability of human walking. By comparing two sets of simulation results, it is shown that the BP fuzzy neural network PID control outperforms the other two control methods in terms of overshoot and settling time. The specific conclusions are as follows: after multiple walking gait tests, the robot’s walking process proved to be relatively safe and stable; when using BP fuzzy neural network PID control, there is no significant oscillation, with an overshoot of 5.5% and a settling time of 0.49 s, but the speed was slow, with a walking speed of approximately 0.18 m/s, a stride length of about 32 cm, and a gait cycle duration of approximately 1.8 s. The model proposed in this paper can effectively assist patients in recovering their ability to walk. However, the lower limb exoskeleton rehabilitation robot still faces challenges, such as a slow speed, large size, and heavy weight, which need to be optimized and improved in future research.
Journal Article
Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes
Nickel-rich layered oxide cathodes promise ultrahigh energy density but is plagued by the mechanical failure of the secondary particle upon (de)lithiation. Existing approaches for alleviating the structural degradation could retard pulverization, yet fail to tune the stress distribution and root out the formation of cracks. Herein, we report a unique strategy to uniformize the stress distribution in secondary particle via Kirkendall effect to stabilize the core region during electrochemical cycling. Exotic metal/metalloid oxides (such as Al
2
O
3
or SiO
2
) is introduced as the heterogeneous nucleation seeds for the preferential growth of the precursor. The calcination treatment afterwards generates a dopant-rich interior structure with central Kirkendall void, due to the different diffusivity between the exotic element and nickel atom. The resulting cathode material exhibits superior structural and electrochemical reversibility, thus contributing to a high specific energy density (based on cathode) of 660 Wh kg
−1
after 500 cycles with a retention rate of 86%. This study suggests that uniformizing stress distribution represents a promising pathway to tackle the structural instability facing nickel-rich layered oxide cathodes.
Nickel-rich layered oxide cathodes offer high energy density yet suffer from mechanical degradation during (de)lithiation. Here, the authors present a strategy that leverages the Kirkendall effect to equalize stress within the cathode particles, thereby stabilizing their structure and enhancing the cycling stability.
Journal Article
Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements
2021
A key challenge for solid-state-batteries development is to design electrode-electrolyte interfaces that combine (electro)chemical and mechanical stability with facile Li-ion transport. However, while the solid-electrolyte/electrode interfacial area should be maximized to facilitate the transport of high electrical currents on the one hand, on the other hand, this area should be minimized to reduce the parasitic interfacial reactions and promote the overall cell stability. To improve these aspects simultaneously, we report the use of an interfacial inorganic coating and the study of its impact on the local Li-ion transport over the grain boundaries. Via exchange-NMR measurements, we quantify the equilibrium between the various phases present at the interface between an S-based positive electrode and an inorganic solid-electrolyte. We also demonstrate the beneficial effect of the LiI coating on the all-solid-state cell performances, which leads to efficient sulfur activation and prevention of solid-electrolyte decomposition. Finally, we report 200 cycles with a stable capacity of around 600 mAh g
−1
at 0.264 mA cm
−2
for a full lab-scale cell comprising of LiI-coated Li
2
S-based cathode, Li-In alloy anode and Li
6
PS
5
Cl solid electrolyte.
Development of all-solid-state batteries requires stable solid electrolyte-electrode interfaces. Here, via exchange-NMR measurements, the authors investigate the positive electrode-solid electrolyte interface, revealing the impact of an inorganic coating on the Li-ion transport properties.
Journal Article