Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Zhao, Fujie"
Sort by:
Cryptococcus neoformans, a global threat to human health
Background Emerging fungal pathogens pose important threats to global public health. The World Health Organization has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans , as a paradigm, we review progress made over the past two decades on its global burden, its clinical manifestation and management of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts to improve future diagnoses, therapies, and interventions associated with fungal infections. Methods We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed and ScienceDirect with the keyword Cryptococcus neoformans  to identify case reports of cryptococcal infections published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved antifungal drugs. Results There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningitis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal meningitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and the Latin America region have increased by approximately two-fold since 2009, while other regions showed either reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are limited, and emerging antifungal resistance exacerbates the public health burden. Conclusion The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development of novel management strategies through the identification of new drug targets and the discovery and optimization of new and existing diagnostics and therapeutics are key to reducing the health burden.
Icariin regulates the proliferation and apoptosis of human ovarian cancer cells through microRNA-21 by targeting PTEN, RECK and Bcl-2
Icariin is the main active ingredient found in the traditional Chinese medicinal plant Epimedium, and exhibits various pharmacological effects such as enhanced immune function, anticancer activity, improved cardiovascular function and endocrine adjustment. However, the effect of icariin on ovarian cancer and the related mechanism have never been investigated. In the present study, we aimed to verify whether icariin inhibits the proliferation and increases the apoptosis of human ovarian cancer cells, and its molecular mechanism in order to establish an association and identify potential therapeutic targets. In the present study, ovarian cancer A2780 cells were treated with various concentrations of icariin, and the cell viability was evaluated by 3,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry and caspase-3 colorimetric assay were performed to observe apoptotic changes in the A2780 cells. qPCR analysis was used to analyze miR-21 expression in the A2780 cells. Western blot analysis was used to assess PTEN, RECK and Bcl-2 protein expression. Transfection of microRNA-21 (miR-21) and anti-miR-21 was used to investigate expression of its target genes associated with cell proliferation and apoptosis. Icariin concomitantly suppressed cell proliferation, accelerated apoptosis and increased caspase-3 activity in the A2780 cells. In the ovarian cancer A2780 cells, icariin substantially decreased the miR-21 expression level, increased PTEN and RECK protein expression levels and decreased the Bcl-2 protein expression level. Notably, miR-21 regulated the potential anticancer effects of icariin on cell proliferation and apoptosis by targeting PTEN, RECK and Bcl-2 in the ovarian cancer A2780 cells. Our results demonstrated that icariin is an excellent candidate antitumor agent which exhibits an anticancer curative effect on ovarian cancer cells. miR-21 and its target genes may play a vital role in the molecular mechanism of the anticancer effects of icariin.
Rtf1 HMD domain facilitates global histone H2B monoubiquitination and regulates morphogenesis and virulence in the meningitis-causing pathogen Cryptococcus neoformans
Rtf1 is generally considered to be a subunit of the Paf1 complex (Paf1C), which is a multifunctional protein complex involved in histone modification and RNA biosynthesis at multiple stages. Rtf1 is stably associated with the Paf1C in Saccharomyces cerevisiae , but not in other species including humans. Little is known about its function in human fungal pathogens. Here, we show that Rtf1 is required for facilitating H2B monoubiquitination (H2Bub1), and regulates fungal morphogenesis and pathogenicity in the meningitis-causing fungal pathogen Cryptococcus neoformans . Rtf1 is not tightly associated with the Paf1C, and its histone modification domain (HMD) is sufficient to promote H2Bub1 and the expression of genes related to fungal mating and filamentation. Moreover, Rtf1 HMD fully restores fungal morphogenesis and pathogenicity; however, it fails to restore defects of thermal tolerance and melanin production in the rtf1 Δ strain background. The present study establishes a role for cryptococcal Rtf1 as a Paf1C-independent regulator in regulating fungal morphogenesis and pathogenicity, and highlights the function of HMD in facilitating global H2Bub1 in C. neoformans .
Cardioprotective Effect of Thiazide-Like Diuretics: A Meta-Analysis
BACKGROUND AND PURPOSE Thiazide diuretics (TD), including thiazide-type (chlorothiazide and hydrochlorothiazide) and thiazide-like diuretics (indapamide and chlorthalidone), have been used for the treatment of hypertension for more than 5 decades. This meta-analysis aimed to evaluate whether TD, including thiazide-type and thiazide-like diuretics have additional cardioprotective effects. EXPERIMENTAL APPROACH We performed a pooled study of 19 randomized clinical trials (RCTs). PubMed and EMBASE databases were searched for RCTs assessing TD treatment in patients with hypertension. KEY RESULTS Nineteen RCTs involving 112,113 patients (56,802 in TD; 55,311 in control) were included. The incidence ratio of cardiac events (CVs) was 34.3 vs. 37.8 per 1,000 patient-years in patients randomized to TD and controls, respectively. TD treatment was associated with reductions in the risks of CVs (odds ratio (OR): 0.86, P = 0.007) and heart failure (OR: 0.62, P < 0.001), but not different in stroke (OR: 0.92, P = 0.438) or CHD (OR: 0.95, P = 0.378) between diuretics and controls. Further analysis showed that the observed benefits were mainly confined to thiazide-like diuretic therapy rather than thiazide-type diuretics with a significant reduction in the risk of CVs (OR: 0.78, P < 0.001), heart failure (OR: 0.57, P < 0.001) and stroke (OR: 0.82, P = 0.016). CONCLUSIONS AND IMPLICATIONS This study suggests that use of TD in hypertensive patients results in a reduction in the risk of CVs. Moreover, thiazide-like diuretics have greater protective effect against CVs than thiazide-type diuretics, especially on heart failure, suggesting that preferential use of thiazide-like diuretics over thiazide-type diuretics may result in greater cardiovascular benefits in hypertensive patients.
Porcine Deltacoronavirus Utilizes Sialic Acid as an Attachment Receptor and Trypsin Can Influence the Binding Activity
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV–host interactions and provides new strategies to control PDCoV infection.
PDGFBB improved the biological function of menstrual blood-derived stromal cells and the anti-fibrotic properties of exosomes
Background Intrauterine adhesion (IUA) is a reproductive dysfunction disease characterized by endometrial fibrosis, with limited therapeutic options and poor prognosis. Our previous studies confirmed that menstrual blood-derived stromal cells (MenSCs) effectively attenuated endometrial fibrosis in an animal model of IUA mainly through exosomes. This therapeutic effect can be enhanced by platelet-rich plasma (PRP), in which PDGFBB is an abundant growth factor. Therefore, we aimed to compare the effects of PRP and PDGFBB on the biological activities of MenSCs in vitro, and to further investigate the molecular mechanism of MenSCs-derived exosomes in alleviating endometrial fibrosis. Methods MenSCs were isolated for in vitro functional assays to examine the viability, migration, and stemness of MenSCs. Endometrial stromal cells (EndoSCs) were treated with 50 ug/ml of MenSCs-derived exosomes, obtained by differential ultracentrifugation extraction. The molecular mechanisms by which PDGFBB improves MenSCs and exosomes alleviate EndoSCs fibrosis were then explored using immunofluorescence, western blot, and co-immunoprecipitation. Results Both 100 ng/ml PDGFBB and 10% activated PRP promoted the proliferation, increased the S phase of cell cycle, and inhibited apoptosis of MenSCs in vitro. Compared with PRP, PDGFBB significantly promoted MenSCs migration. All of these effects were inhibited by sorafenib, a PDGFR-β inhibitor. PRP and PDGFBB activated AKT/NF-κB signaling pathway in MenSCs and increased the expression of P65 and OCT4. Moreover, pretreatment of PDGFBB did not increase the secretion of MenSCs but significantly increased the anti-fibrosis effects of MenSCs-derived exosomes on IUA-EndoSCs. MenSCs-derived exosomes attenuated SMAD3 phosphorylation and increased YAP ubiquitination, which reduced the binding of YAP/SMAD3. Pretreatment with PDGFBB amplified this effect. Conclusions In summary, PDGFBB could improve the biological functions of MenSCs via AKT/NF-κB signaling pathway, including viability, migration, and stemness. Our results indicated that PDGFBB amplified MenSCs-derived exosomes to attenuate endometrial fibrosis by inhibiting YAP activity, revealing a novel mechanism by which PRP enhanced the ability of MenSCs to repair tissue injury and providing a potential option for improving stem cell efficacy in IUA.
SF008/#125  Whole course tumor free laparoscopic radical hysterectomy on cervical cancer
IntroductionBecause of the concern of the tumor exposure during the classical LRH procedure for cervical cancer,we designed and implemented a surgical approach that ensure no tumor exposure throughout the procedure.Description1. The first step of the surgery is determing the lower border of the anterior and posterior vaginal walls which are intended to be excised.Then suture them together to seal the cervical cancer, so as to ensure no tumor exposure throughout LRH surgery. 2. 40 ml saline is injected into the vesicovaginal and rectovaginal spaces respectively to facilitate separation of the anterior and posterior spaces. 3. The anterior and posterior vaginal walls are cut to expose vesicovaginal space and rectovaginal space by monopolar electrocautery. Fingers are used to further separate the anterior and posterior spaces to reach the anterior and posterior reflection peritoneum. 4. A gauze is plugged into the two spaces respectively for support and as a marker. 5. after completing the pelvic lymphadenectomy,the operator cut the uterorectal and uterovesical reflection peritoneum to expose the gauze in above two spaces that have already been separated transvaginally . 6. After above procedures,the dissection of ureteral tunnel,and the cut of cardinal ligament,sacral ligament,and paravaginal tissues become simple.Finally,the LRH surgery is completed easily and safely,and no tumor exposure throughout the surgery.Conclusion/ImplicationsThis surgical method can not only ensure no tumor exposure in the whole course of LRH surgery on cervical cancer,but also make the LRH surgery simple and safe.
S100A8/A9 promotes endometrial fibrosis via regulating RAGE/JAK2/STAT3 signaling pathway
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model. A study on clinical tissue specimens and a porcine model reveals that S100A8/A9 mediates endometrial stromal cell fibrosis and IUA by activating the RAGE-JAK2-STAT3 pathway. These effects can be ameliorated through MenSCs transplantation.
Assessments of different inactivating reagents in formulating transmissible gastroenteritis virus vaccine
Background Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV. Methods In this study, cell-cultured TGEV HN-2012 strain was inactivated by formaldehyde (FA), β-propiolactone (BPL) or binaryethylenimine (BEI), respectively. Then the inactivated TGEV vaccine was prepared with freund's adjuvant, and the immunization effects were evaluated in mice. The TGEV-specific IgG level was detected by ELISA. The positive rates of CD4 + , CD8 + , CD4 + IFN-γ + , CD4 + IL-4 + T lymphocytes were detected by flow cytometry assay. Lymphocyte proliferation assay and gross pathology and histopathology examination were also performed to assess the three different inactivating reagents in formulating TGEV vaccine. Results The results showed that the TGEV-specific IgG level in FA group (n = 17) was earlier and stronger, while the BEI group produced much longer-term IgG level. The lymphocyte proliferation test demonstrated that the BEI group had a stronger ability to induce spleen lymphocyte proliferation. The positive rates of CD4 + and CD8 + T lymphocyte subsets of peripheral blood lymphocyte in BEI group was higher than that in FA group and BPL groups by flow cytometry assay. The positive rate of CD4 + IFN-γ + T lymphocyte subset was the highest in the BPL group, and the positive rate of CD4 + IL-4 + T lymphocyte subset was the highest in the FA group. There were no obvious pathological changes in the vaccinated mice and the control group after the macroscopic and histopathological examination. Conclusions These results indicated that all the three experimental groups could induce cellular and humoral immunity, and the FA group had the best humoral immunity effect, while the BEI group showed its excellent cellular immunity effect.
Selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin-positive cells instigates diffuse large B-cell lymphoma in mice in vivo
During the maturation of hematopoietic stem/progenitor cells (HSPCs) to fully differentiated mature B lymphocytes, developing lymphocytes may undergo malignant transformation and produce B-cell lymphomas. Emerging evidence shows that through the endothelial-hematopoietic transition, specialized endothelial cells called the hemogenic endothelium can differentiate into HSPCs. However, the contribution of genetic defects in hemogenic endothelial cells to B-cell lymphomagenesis has not yet been investigated. Here, we report that mice with endothelial cell-specific deletion of Fbw7 spontaneously developed diffuse large B-cell lymphoma (DLBCL) following Bcl6 accumulation. Using lineage tracing, we showed that B-cell lymphomas in Fbw7 knockout mice were hemogenic endothelium-derived. Mechanistically, we found that FBW7 directly interacted with Bcl6 and promoted its proteasomal degradation. FBW7 expression levels are inversely correlated with BCL6 expression. Additionally, pharmacological disruption of Bcl6 abolished Fbw7 deletion-induced B-cell lymphomagenesis. We conclude that selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin positive endothelial cells instigates diffuse large B-cell lymphoma via upregulation of BCL6 stability. In addition, the mice with endothelial cell-specific deletion of Fbw7 provide a valuable preclinical platform for in vivo development and evaluation of novel therapeutic interventions for the treatment of DLBCL.