Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7,183 result(s) for "Zhao, J. Z"
Sort by:
Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P
Our understanding of when and how humans adapted to living on the Tibetan Plateau at altitudes above 2000 to 3000 meters has been constrained by a paucity of archaeological data. Here we report data sets from the northeastern Tibetan Plateau indicating that the first villages were established only by 5200 calendar years before the present (cal yr B.P.). Using these data, we tested the hypothesis that a novel agropastoral economy facilitated year-round living at higher altitudes since 3600 cal yr B.P. This successful subsistence strategy facilitated the adaptation of farmers-herders to the challenges of global temperature decline during the late Holocene.
ECONOMIC, ECOLOGICAL, FOOD SAFETY, AND SOCIAL CONSEQUENCES OF THE DEPLOYMENT OF BT TRANSGENIC PLANTS
Transgenic plants expressing insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt), are revolutionizing agriculture. Bt, which had limited use as a foliar insecticide, has become a major insecticide because genes that produce Bt toxins have been engineered into major crops grown on 11.4 million ha worldwide in 2000. Based on the data collected to date, generally these crops have shown positive economic benefits to growers and reduced the use of other insecticides. The potential ecological and human health consequences of Bt plants, including effects on nontarget organisms, food safety, and the development of resistant insect populations, are being compared for Bt plants and alternative insect management strategies. Scientists do not have full knowledge of the risks and benefits of any insect management strategies. Bt plants were deployed with the expectation that the risks would be lower than current or alternative technologies and that the benefits would be greater. Based on the data to date, these expectations seem valid.
Chiral singlet superconductivity in the weakly correlated metal LaPt3P
Chiral superconductors are novel topological materials with finite angular momentum Cooper pairs circulating around a unique chiral axis, thereby spontaneously breaking time-reversal symmetry. They are rather scarce and usually feature triplet pairing: a canonical example is the chiral p -wave state realized in the A -phase of superfluid He 3 . Chiral triplet superconductors are, however, topologically fragile with the corresponding gapless boundary modes only weakly protected against symmetry-preserving perturbations in contrast to their singlet counterparts. Using muon spin relaxation measurements, here we report that the weakly correlated pnictide compound LaPt 3 P has the two key features of a chiral superconductor: spontaneous magnetic fields inside the superconducting state indicating broken time-reversal symmetry and low temperature linear behaviour in the superfluid density indicating line nodes in the order parameter. Using symmetry analysis, first principles band structure calculation and mean-field theory, we unambiguously establish that the superconducting ground state of LaPt 3 P is a chiral d -wave singlet. Chiral superconductors are very rare topological materials. Here, the authors report spontaneous magnetic fields inside the superconducting state and low temperature linear behavior in the superfluid density in LaPt 3 P, suggesting a chiral d -wave singlet superconducting state.
Cross-cultural translation of the Lysholm knee score in Chinese and its validation in patients with anterior cruciate ligament injury
Background The Lysholm Knee Score (LKS) is widely used and is one of the most effective questionnaires employed to assess knee injuries. Although LKS has been translated into multiple languages, there is no Chinese version even though China has the largest population of patients with knee-joint injuries. The objective of our study was to develop the Chinese version of LKS (C-LKS) and assess its reliability, validity and responsiveness in Chinese patients with anterior cruciate ligament (ACL) injuries. Methods Study participants were mainly recruited among patients with ACL injuries scheduled for arthroscopic ACL reconstruction at our hospital. First, we developed the C-LKS in a five-step translation and cross-cultural adaptation procedure. Next, we calculated the Cronbach’s alpha, intraclass correlation coefficient (ICC), Pearson’s correlation coefficient ( r ), effect size (ES), and standardized response mean (SRM) to evaluate the reliability, validity, and responsiveness of C-LKS respectively. Results Overall, 126 patients with ACL injuries successfully completed the questionnaires. Acceptable internal consistency (Cronbach’s alpha = 0.726) as well as excellent test-retest reliability (ICC = 0.935) was found for C-LKS. Good or moderate correlation ( r  = 0.514–0.837) was determined among C-LKS and International Knee Documentation Committee Subjective Knee Form (IKDC), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), physical subscales of SF-36; C-LKS also had fair or moderate correlation ( r  = 0.207–0.462) with the other subscales of SF-36, which adequately illustrated that good validity was included in C-LKS. In addition, good responsiveness was also observed in C-LKS (ES = 1.36,SRM = 1.26). Conclusions We have shown that our developed C-LKS questionnaire is reliable, valid and responsible for the evaluation of Chinese-speaking patients with ACL injuries and it would be an effective instrument.
Toxoplasma gondii infection in pregnant women in China
Toxoplasmosis, caused by the protozoan parasite Toxoplasma gondii, is one of the most common parasitic infections in humans. Primary infection in pregnant women can be transmitted to the fetus leading to miscarriage or congenital toxoplasmosis. Carefully designed nationwide seroprevalence surveys and case-control studies of risk factors conducted primarily in Europe and America, have shaped our view of the global status of maternal and congenital infection, directing approaches to disease prevention. However, despite encompassing 1 in 5 of the world's population, information is limited on the status of toxoplasmosis in China, partly due to the linguistic inaccessibility of the Chinese literature to the global scientific community. By selection and analysis of studies and data, reported within the last 2 decades in China, this review summarizes and renders accessible a large body of Chinese and other literature and aims to estimate the seroprevalence in Chinese pregnant women. It also reviews the prevalence trends, risk factors, and clinical manifestations. The key findings are (1) the majority of studies show that the overall seroprevalence in Chinese pregnant women is less than 10%, considerably lower than a recently published global analysis; and (2) the few available appropriate studies on maternal acute infection suggested an incidence of 0·3% which is broadly comparable to studies from other countries.
The nonshivering thermogenesis of brown adipose tissue and fat mobilization of striped hamsters exposed to cycles of cold and warm temperatures
The adaptive adjustments in the capacity for metabolic thermogenesis are critical for the survival in many small mammals that are acclimated to cold winter conditions. In this study the striped hamsters (Cricetulus barabensis) were subjected to repeated cycles of cold (5°C) and warm (23°C) temperatures. Resting metabolic rate (RMR), nonshivering thermogenesis (NST) and energy intake, as well as the expression of uncoupling protein 1 (UCP 1 ) of brown adipose tissue (BAT) and serum thyroid hormone levels were measured. Both RMR and NST were significantly increased in striped hamsters subjected to repeated cycles of short-term cold (5°C, 72 h) - warm (23°C, 4 days) temperatures compared to that of the hamsters consistently kept at 23°C. In these cycled hamsters, BAT UCP 1 expression was significantly upregulated, whereas serum T 3 and T 4 concentration did not change significantly. Moreover, gross energy intake was considerably increased during both cold exposure and warm phases, whereas fat deposition was significantly decreased in these cycled hamsters compared to those consistently kept at 23°C. This indicates that small mammals may both increase energy intake and mobilize fat depots to cope with frequent cold exposure. Thyroid hormone may be not involved in the BAT UCP 1 -mediated thermogenesis and fat mobilization.
Weyl fermions in ferromagnetic high-temperature phase of K2Cr8O16
By combining first-principles calculations and symmetry arguments, we propose that the half-metallic phase of K2Cr8O16 presents ferromagnetic Weyl fermions. In particular, K2Cr8O16 possesses two pairs of Weyl nodes, which originate from two groups of nodal lines connected by the mirror reflection symmetry. We show that the non-trivial topological properties of K2Cr8O16 come from the partially occupied t2g states of Cr, and we also demonstrate that such exotic topological feature is robust. The topological surface states and corresponding Fermi arcs are revealed. As K2Cr8O16 is a realistic and widely studied material, our results suggest that K2Cr8O16 is an ideal candidate for studying ferromagnetic Weyl fermions. In addition, K2Cr8O16 possesses several interesting phenomena, such as the co-existence of charge density wave and Weyl fermions, even pairs of FM Weyl points, and tunable distribution of Weyl points, which will attract intensive attentions in this field.
Multigap superconductivity in the Mo5PB2 boron-phosphorus compound
The tetragonal Mo5PB2 compound was recently reported to show superconductivity with a critical temperature up to 9.2 K. In search of evidence for multiple superconducting gaps in Mo5PB2, comprehensive measurements, including magnetic susceptibility, electrical resistivity, heat capacity, and muon-spin rotation and relaxation measurements were carried out. Data from both low-temperature superfluid density and electronic specific heat suggest a nodeless superconducting ground state in Mo5PB2. Two superconducting energy gaps Δ0 = 1.02 meV (25%) and 1.49 meV (75%) are required to describe the low-T electronic specific-heat data. The multigap features are clearly evidenced by the field dependence of the electronic specific-heat coefficient and the Gaussian relaxation rate in the superconducting state (i.e., superfluid density), as well as by the temperature dependence of the upper critical field. By combining our extensive experimental results with numerical band-structure calculations, we provide compelling evidence of multigap superconductivity in Mo5PB2.
Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution
Preventing insect pests from developing resistance to Bacillus thuringiensis ( Bt ) toxins produced by transgenic crops is a major challenge for agriculture. Theoretical models suggest that plants containing two dissimilar Bt toxin genes ('pyramided' plants) have the potential to delay resistance more effectively than single-toxin plants used sequentially or in mosaics. To test these predictions, we developed a unique model system consisting of Bt transgenic broccoli plants and the diamondback moth, Plutella xylostella . We conducted a greenhouse study using an artificial population of diamondback moths carrying genes for resistance to the Bt toxins Cry1Ac and Cry1C at frequencies of about 0.10 and 0.20, respectively. After 24 generations of selection, resistance to pyramided two-gene plants was significantly delayed as compared with resistance to single-gene plants deployed in mosaics, and to Cry1Ac toxin when it was the first used in a sequence. These results have important implications for the development and regulation of transgenic insecticidal plants.
Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins
This study was undertaken to determine the effects of pyramiding two Bacillus thuringiensis (Bt) genes in the same plant on the production of Bt proteins and the control of diamondback moths (DBM, Plutella xylostella) resistant to one or the other protein. Broccoli lines carrying both cry1Ac and cry1C Bt genes were produced by sexual crosses of cry1Ac- and cry1C-transgenic plants. Plants containing both genes were selected by tests for resistance to kanamycin and hygromycin, and confirmed by PCR analysis for the Bt genes. Both cry1Ac and cry1C mRNAs were detected in the hybrid lines, and Cry1Ac and Cry1C proteins were stably produced at levels comparable to the parental plants. Plants producing both Cry1Ac and Cry1C proteins caused rapid and complete mortality of DBM larvae resistant to Cry1A or Cry1C, and suffered little or no leaf damage. These plants, in combination with the resistant DBM populations available, will allow greenhouse or field studies of resistance management strategies involving gene pyramiding.