Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
539
result(s) for
"Zhao, W.-D."
Sort by:
Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion
2021
Quantum phase transitions (QPTs) are usually associated with many-body systems in the thermodynamic limit when their ground states show abrupt changes at zero temperature with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can also occur in a system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report an experimental demonstration of a QPT in the QRM using a
171
Yb
+
ion in a Paul trap. We measure the spin-up state population and the average phonon number of the ion as two order parameters and observe clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and its spatial motion. An experimental probe of the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit opens up a window for controlled study of QPTs and quantum critical phenomena.
Quantum phase transition occurs in many-body systems with abrupt changes in the ground state around zero temperature. Here the authors report signatures of quantum phase transition in single trapped ion that can be described using quantum Rabi model.
Journal Article
Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator
by
Jiang, Y.
,
He, L.
,
Zhou, Z.-C.
in
639/766/36
,
639/766/483/3926
,
Humanities and Social Sciences
2022
Supersymmetry (SUSY) helps solve the hierarchy problem in high-energy physics and provides a natural groundwork for unifying gravity with other fundamental interactions. While being one of the most promising frameworks for theories beyond the Standard Model, its direct experimental evidence in nature still remains to be discovered. Here we report experimental realization of a supersymmetric quantum mechanics (SUSY QM) model, a reduction of the SUSY quantum field theory for studying its fundamental properties, using a trapped ion quantum simulator. We demonstrate the energy degeneracy caused by SUSY in this model and the spontaneous SUSY breaking. By a partial quantum state tomography of the spin-phonon coupled system, we explicitly measure the supercharge of the degenerate ground states, which are superpositions of the bosonic and the fermionic states. Our work demonstrates the trapped-ion quantum simulator as an economic yet powerful platform to study versatile physics in a single well-controlled system.
Quantum simulators should be able to give insight on exotic physics models such as supersymmetric extensions of Standard Model. Here, the authors demonstrate a first step in this direction, realising a prototypical SUSY model (and spontaneous SUSY breaking within it) using a trapped ion quantum simulator.
Journal Article
Elevated PLGF contributes to small-cell lung cancer brain metastasis
2013
Brain metastasis (BM) is a major cause of mortality in small-cell lung cancer (SCLC) patients; however, the molecular pathway of SCLC BM remains largely unknown because of a lack of investigation. Here we screen the levels of some candidate-soluble factors in the serum of SCLC patients and find that SCLC patients with high levels of placental growth factor (PLGF) are prone to BM. Using
in vitro
blood–brain barrier model, we show that PLGF derived from SCLC cells triggers vascular endothelial growth factor receptor-1-Rho-extracellular regulated protein kinase 1/2 signaling axis activation, results in disassembly of tight junction in brain endothelial cells and promotes SCLC cell transendothelial migration. Furthermore, the downregulation of PLGF suppresses SCLC cell metastasis to the brain in an experimental BM model. These data suggest that PLGF is a potential signature of SCLC BM and a prospective therapeutic target for SCLC BM.
Journal Article
Cloning and expression of human HBP1, a high mobility group protein that enhances myeloperoxidase (MPO) promoter activity
2001
Factors which regulate transcription in immature myeloid cells are of great current interest for the light they may shed upon myeloid differentiation. In the course of screening for transcription factors which interact with the human myeloperoxidase (MPO) promoter we, for the first time, identified and cloned the cDNA and genomic DNA for human HBP1 (HMG-Box containing protein 1), a member of the high mobility group of non-histone chromosomal proteins. HBP1 cDNA was initially cloned from rat brain in 1994, but its presence in human cells or in myeloid tissue had not been described previously. The sequence of human HBP1 cDNA shows 84% overall homology with the rat HBP1 cDNA sequence. We have subsequently cloned the gene, which is present as a single copy, 25 kbp in length. Northern blotting reveals a single 2.6 kb mRNA transcript which is expressed at higher levels in human myeloid and B lymphoid cell lines than in T cell lines tested and is present in several non-myeloid human cell lines. Comparison of the mRNA and genomic sequences reveals the gene to contain 10 exons and 9 introns. The sequence of human HBP1 mRNA contains a single open reading frame, which codes for a protein 514 amino acids in length. The amino acid sequence specified by the coding region shows 95% homology with the rat HBP1 protein. The human protein sequence exhibits a putative DNA-binding domain similar to that seen in rat HBP1 and shows homology with the activation and repressor domains previously demonstrated in the rat protein. We have expressed human HBP1 protein both in vitro and in prokaryotic and eukaryotic cells. The expressed fusion protein binds to a sequence in a functionally important region within the basal human MPO promoter. In transient co-transfection experiments HBP1 enhances MPO promoter activity. Human HBP1 appears to be a novel transcription factor which is likely to play an important role in regulating transcription in developing myeloid cells.
Journal Article
Atmospheric Deposition, Mineralization and Leaching of Nitrogen in Subtropical Forested Catchments, South China
2004
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25-38 kg ha(-1) yr(-1)). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3-. Transformation of N to NO3- in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3- from the root zone of the soils, little NO3- appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3- in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.
Journal Article
Finite Element Multi-mode Approach to Thermal Postbuckling of Functionally Graded Plates
2015
Postbuckling analysis of functionally graded ceramic-metal plates under temperature field is presented using finite element multi-mode method. The three-node triangular element based on the Mindlin plate theory is employed to account for the transverse shear strains, and the von-Karman nonlinear strain-displacement relation is utilized considering the geometric nonlinearity. The effective material properties are assumed to vary through the thickness direction according to the power law distribution of the volume fraction of constituents. The temperature distribution along the thickness is determined by one dimensional Fourier equations of heat conduction. The buckling mode shape solved from eigen-buckling analysis is adopted as the assumed mode function to reduce the degrees of freedom of nonlinear postbuckling equilibrium equations. The postbuckling response is obtained by solving the nonlinear equilibrium equations, and compared with the Newton- Raphson numerical results. The effects of boundary conditions, material gradient index and temperature distribution on postbuckling behavior are examined.
Journal Article
Virtual inertia control strategy of doubly-fed induction generator with additional inertia and damping torque
2018
Doubly-fed induction generator (DFIG) with dual Pulse-Width Modulation (PWM) converter cannot maintain the active power balance or voltage stability of the power grid self-synchronously because of lacking mechanical inertia and mechanical damping. The virtual synchronous generator (VSG) technology can help solve this problem through simulating the mechanical equation and electromagnetic equation of synchronous generator to control the grid-connected converter. However, under the common first-order virtual inertia link used in the VSG control scheme, while DFIG providing active power support, there exists second frequency dip and the rotor speed recovers slowly, which is not conducive for DFIG to provide continuous and effective virtual inertia support. In order to overcome the drawbacks as well as avoid second frequency dip, this paper puts forward a virtual inertia control strategy of DFIG with additional inertia and damping torque. The additional torque is achieved by proportional-derivative (PD) controller with rotor slip as an input signal. Simulation results on DIgSILENT/powerfactory platform show that the proposed control strategy is effective to reduce frequency deviation and recover the rotor speed faster without second frequency dip phenomenon.
Journal Article
Copper/Zinc Superoxide Dismutase, Nuclear DNA Content, and Progression in Human Gliomas
by
Saito, Atsushi
,
Nose, Tadao
,
Yoshii, Yoshihiko
in
Adult
,
Aged
,
Biological and medical sciences
1999
To our knowledge, there have been no previous reports regarding the immunohistochemistry and image cytometry to demonstrate elevated Copper/zinc superoxide dismutase (Cu/Zn SOD) expression and numbers of the clonal cells in human gliomas. In 30 well-studied patients with gliomas, immunoreactivity for Cu/Zn SOD and cytometric evidence of DNA ploidy in the G2M cell cycle phase were evaluated from routinely prepared tissue blocks. Cu/Zn SOD positive tumor cells were shown in 8 of 13 glioblastomas (mean quantitative immunoreactivity SOD score; 1), 3 of 8 anaplastic gliomas (score; 0.6), and none of 9 low-grade gliomas. The differences in SOD score was not significant. In hypertetraploid glioblastomas, time to progression was shorter than for hypertetraploid of anaplastic gliomas, while SOD scores were not significantly different. The same relationship held for tetraploid specimens. Considering variables in combination, hypertetraploid gliomas with high SOD immunoreactivity showed a significantly short time to progression (p < 0.05) (1-5 months after radiotherapy and chemotherapy) compared with hypertetraploid, low-SOD immunoreactivity gliomas or tetraploid, low-SOD immunoreactivity gliomas. The tumor cells with high SOD activity also tended to be resistant for radiotherapy and anticancer drugs. Those results were suggested that the high grade glioma with a single clone and low SOD activity were effective for radiotherapy associated with oxidative stress, and that the high grade gliomas with more than two clones and high SOD activity were very less effective for same therapy. Cu/Zn SOD activity and the degree of the clonality in human gliomas should be very important factors influencing a choice of oxidative cytotoxic treatment.
Journal Article
Solidification of undercooled molten Ni-based alloys
by
Yang, G. C.
,
Zhao, D. W.
,
Liu, F.
in
Applied sciences
,
Cross-disciplinary physics: materials science; rheology
,
Exact sciences and technology
2001
The effect of undercooling on grain structure is investigated in pure nickel, Ni sub 75 Cu sub 25 , and DD3 single-crystal superalloy by employing the method of molten salt denucleating combined with thermal cycling. Meanwhile, a comparison of factors that may be related to structure formation is performed and the difference in the refined structure between Ni sub 75 Cu sub 25 alloy and DD3 single-crystal superalloy is explained. Only one grain refinement occurs at the critical undercooling in pure nickel, whereas two take place at both low and high undercoolings in Ni sub 75 Cu sub 25 and DD3 single-crystal superalloy melts. The first grain refinement at low undercoolings mainly originates from dendrite remelting driven by the chemical superheating produced in recalescence, and the second one at high undercoolings is due to the recrysatllization process as a result of the high stress provided in the rapid solidification after high undercooling. Dislocation morphology evolution in as-solidified structure is also provided by the transmission electron microscopy (TEM) technique to further verify the recrystallization mechanism.
Journal Article