Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Zhao, Xiaofen"
Sort by:
Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China
Contamination of shooting ranges by heavy metals in particular Pb represents a widespread environmental issue attracting concern worldwide. Contaminant accumulation in shooting range soils can pose potential ecological risks and health risks for shooters and workers. Based on the published data on metal contamination at five shooting ranges in China, potential ecological and human health risks of several metals, and in particular, Pb were assessed for the five surveyed shooting ranges. Data show the mean concentrations of Pb, Cu, Hg, Sb, Ni and Cr in various ranges were all higher than the local soil background values, implying their accumulation was induced by shooting activities. The degree of contamination varied with sites and metals, very high Pb contamination at Range 1, Range 2 and Range 5-1, while moderate Pb contamination at Range 3 and Range 5-2. Comparatively, As, Zn and Co showed no contamination. Among the surveyed metals, Pb, Cu, Hg and Sb in shooting range soils displayed relatively high potential ecological risks. The overall degree of potential ecological risk was very high at Range 1 and Range 2, considerable at Range 4 and Range 5-1, and low at Range 3 and Range 5-2. The mean HI (hazard index) of Pb at Range 2 and the maximum HI values at Range 1 and Range 4 were higher than 1, suggesting a possibility of non-carcinogenic risks of Pb contamination at these sites. However, Pb in other range soils and other metals, across the five ranges, all exhibited no non-carcinogenic risks. The cancer risks of the four carcinogenic contaminants (As, Co, Cr, and Ni) were acceptable or negligible at all ranges. In conclusion, contamination of Pb and other metals such as Cu, Hg and Sb can cause various potential ecological risks at all the surveyed ranges, but only Pb at three ranges shows possible health risks. Contamination of Pb in the surveyed shooting ranges should be managed to reduce its possible environmental and health risks.
Relationships between coping style, life events, and resilience among nurses in China: a cross-sectional study using structural equation modeling
Background Resilience is the ability to adapt and implement effective actions to maintain mental health during adversity, benefiting patients when exhibited by nurses. It encompasses personal and environmental factors. However, few studies have explored their combined impact on nurses’ resilience. Aims This study investigated the mediating role of coping style in the relationships between life events and resilience among Chinese nurses. Methods This study employed a cross-sectional correlational design and followed the STROBE guidelines. Convenience sampling was used to recruit 1,068 clinical nurses from government hospitals in China. Data were collected online using three validated self-reported questionnaires between March and April 2022. Pearson’s correlation analysis and structural equation modeling were utilized for data analysis. Results Significant relationships were found between education level, hospital level, professional title, and resilience, as well as between life events, coping style, and resilience. Life events directly and negatively influenced resilience and coping style. Coping style mediated the relationship between life events and resilience. Conclusions Nursing managers should provide training to enhance nurses’ understanding of mental coping strategies for managing challenges. This will help mitigate the emotional impact of stress, thereby improving nurses’ ability to adapt to and implement strategies that promote mental well-being in challenging circumstances.
Interaction of multiple triggering mechanisms during the 2023 Jishishan earthquake sequence
Post-seismic processes of moderate earthquakes are often overlooked due to their limited rupture extent and uncertainties in source parameters and aftershock catalogs, leading many studies to assume a single triggering mechanism. Following the 2023 M s 6.2 Jishishan earthquake, we identified contrasting triggering processes on the main fault and its conjugate structure. Source modeling shows that aftershocks on the main fault were primarily driven by static stress changes, whereas those on the conjugate fault displayed pronounced spatiotemporal migration. Mainshock-induced volumetric strain elevated pore pressure and enhanced permeability in the hanging wall of the Y-shaped thrust system, facilitating fluid infiltration into the fault. The resulting pore-pressure changes, amplified by coseismic strain, jointly triggered the aftershock sequence on the conjugate-fault. Our results demonstrate that even moderate earthquakes can activate multiple, interacting triggering mechanisms, underscoring the dynamic interplay between crustal stress evolution and subsurface fluid flow. Finite source modelling using geodetic and teleseismic data suggest that aftershocks on the main fault were triggered primarily by static stress changes, whereas those along the conjugate fault network were driven by volumetric strain and fluid injection
Involvement of human and canine MRP1 and MRP4 in benzylpenicillin transport
The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the central nervous system (CNS). It protects the brain by preventing toxic substances from entering the brain but also limits the entry of therapeutic agents. ATP-binding cassette (ABC) efflux transporters are critical for the functional barrier and present a formidable impediment to brain delivery of therapeutic agents including antibiotics. The aim of this study was to investigate the possible involvement of multidrug resistance-associated protein 1 and 4 (MRP1 and MRP4), two ABC transporters, in benzylpenicillin efflux transport using wild-type (WT) MDCKII cells and cells overexpressing those human transporters, as well as non-selective and selective inhibitors. We found that inhibiting MRP1 or MRP4 significantly increased [3H]benzylpenicillin uptake in MDCKII-WT, -MRP1 or -MRP4 cells. Similar results were also found in HepG2 cells, which highly express MRP1 and MRP4, and hCMEC/D3 cells which express MRP1. The results indicate that human and canine MRP1 and MRP4 are involved in benzylpenicillin efflux transport. They could be potential therapeutic targets for improving the efficacy of benzylpenicillin for treating CNS infections since both MRP1 and MRP4 express at human blood-brain barrier.
Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier
While the blood-brain barrier (BBB) protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC) transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP) but not those overexpressing human P-gp (MDCKII-MDR cells) had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.
Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion
Uncertainty factors have substantial influences on the numerical simulations of earthquakes. However, most simulation methods are deterministic and do not sufficiently consider those uncertainty factors. A good approach for predicting future destructive earthquakes that is also applied to probabilistic hazard analysis is studying those uncertainty factors, which is very significant for improving the reliability and accuracy of ground-motion predictions. In this paper, we investigated several uncertainty factors, namely the initial rupture point, stress drop, and number of sub-faults, all of which display substantial influences on ground-motion predictions, via sensitivity analysis. The associated uncertainties are derived by considering the uncertainties in the parameter values, as those uncertainties are associated with the ground motion itself. A sensitivity analysis confirms which uncertainty factors have large influences on ground motion predictions, based upon which we can allocate appropriate weights to those uncertainty factors during the prediction process. We employ the empirical Green function method as a numerical simulation tool. The effectiveness of this method has been previously validated, especially in areas with sufficient earthquake record data such as Japan, Southwest China, and Taiwan, China. Accordingly, we analyse the sensitivities of the uncertainty factors during a prediction of strong ground motion using the empirical Green function method. We consequently draw the following conclusions. (1) The stress drop has the largest influence on ground-motion predictions. The discrepancy between the maximum and minimum PGA among three different stations is very large. In addition, the PGV and PGD also change drastically. The Arias intensity increases exponentially with an increase in the stress drop ratio of two earthquakes. (2) The number of sub-faults also has a large influence on various ground-motion parameters but a small influence on the Fourier spectrum and response spectrum. (3) The initial rupture point largely influences the PGA and Arias intensity. We will accordingly pay additional attention to these uncertainty factors when we conduct ground-motion predictions in the future.
A novel antitumor mechanism of triptonide in colorectal cancer: inducing ferroptosis via the SLC7A11/GPX4 axis
Colorectal cancer (CRC) is a prevalent malignancy affecting the human digestive tract. Triptonide has been shown to have some anticancer activity, but its effect in CRC is vague. Herein, we examined the effect of triptonide on CRC. In this study, the results of bioinformatics analysis displayed that triptonide may regulate ferroptosis in CRC by modulating GPX4 and SLC7A11. In HCT116 and LoVo cells, the expression levels of GPX4 and SLC7A11 were significantly reduced after triptonide management versus the control group. Triptonide inhibited proliferation, but promoted ferroptosis in CRC cells. SLC7A11 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide inhibited activation of the PI3K/AKT/Nrf2 signaling in CRC cells. Activation of the PI3K/AKT signaling or Nrf2 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide suppressed CRC cell growth in vivo by modulating SLC7A11 and GPX4. In conclusion, Triptonide repressed proliferation and facilitated ferroptosis of CRC cells by repressing the SLC7A11/GPX4 axis through inactivation of the PI3K/AKT/Nrf2 signaling.
Review of the identification of near-fault velocity pulse-like strong ground motions
Strong pulse-like ground motions have caused extensive damage to many engineering structures and are one of the main factors influencing earthquake damage in near-fault regions. Therefore, it is necessary to study near-fault velocity pulse-like ground motions to reveal the seismic failure mechanism of engineering structures in near-fault areas and to carry out seismic fortification and seismic design. The key step is the effective identification of strong pulse-like ground motions. The strong pulse-like ground motions identified in previous studies have typically been selected by subjective judgment, because the velocity-time history of the ground motion is dominated by a large pulse. The selection of pulse-like ground motions using these approaches requires a certain level of judgment. However, the classification may not be obvious for many ground motions. Numerous researchers have attempted to capture pulse-like features using different approaches, of which simple pulse models, known as semi-quantitative me
Ultrasensitive electrochemical detection of hepatitis C virus core antigen using terminal deoxynucleotidyl transferase amplification coupled with DNA nanowires
Early diagnosis of hepatitis C virus (HCV) infection is essential to prevent disease from spreading and progression. Herein, a novel electrochemical biosensor was developed for ultrasensitive detection of HCV core antigen (HCVcAg) based on terminal deoxynucleotidyl transferase (TdT) amplification and DNA nanowires (DNW). After sandwich-type antibody-antigen recognition, the antibody-conjugated DNA was pulled to the electrode surface and further extended into a long DNA sequence by robust TdT reaction. Then, large numbers of methylene blue–loaded DNW (MB@DNW) as signal labels are linked to the extended DNA sequence. This results in an amplified electrochemical signal for HCVcAg determination, typically measured at around −0.25 V (Ag/AgCl). Under the optimum conditions, the proposed biosensor achieved a wide linear range for HCVcAg from 0.1 to 312.5 pg/mL with a low limit of detection of 32 fg/mL. The good practicality of the biosensor was demonstrated by recovery experiment (recoveries from 98 to 104% with RSD of 2.5–4.4%) and comparison with enzyme-linked immunosorbent assay (ELISA). Given the highlighted performance, the biosensor is expected to act as a reliable sensing tool for HCVcAg determination in clinics. Graphical abstract Schematic representation of the ultrasensitive electrochemical biosensor based on terminal deoxynucleotidyl transferase (TdT) amplification linked with methylene blue–loaded DNA nanowires (MB@DNW), which can be applied to the determination of hepatitis C virus core antigen (HCVcAg) in clinical samples. dTTPs, 2′-deoxythymidine 5′-triphosphate.