Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
47
result(s) for
"Zhao, Yaying"
Sort by:
Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process
2024
Roasting is an important step in the pretreatment of biomass upgrading. Roasting can improve the fuel quality of biomass, reduce the O/C and H/C ratios in the biomass, and provide the biomass with a fuel quality comparable to that of lignite. Therefore, studying the structure and component evolution laws during biomass roasting treatment is important for the rational and efficient utilization of biomass. When the roasting temperature is 200–300 °C, the cellulose and hemicellulose in the biomass undergo a depolymerization reaction, releasing many monocyclic aromatic hydrocarbons with high reactivity. The proportion of monocyclic aromatic hydrocarbons in biomass roasting products can be effectively regulated by controlling the reaction temperature, residence time, catalyst, baking atmosphere, and other factors in the biomass roasting process. This paper focuses on the dissociation law of organic components in the pretreatment process of biomass roasting.
Journal Article
Effects of Torrefaction Pretreatment on the Structural Features and Combustion Characteristics of Biomass-Based Fuel
2023
Wheat straw, a typical agricultural solid waste, was employed to clarify the effects of torrefaction on the structural features and combustion reactivity of biomass. Two typical torrefaction temperatures (543 K and 573 K), four atmospheres (argon, 6 vol.% O2, dry flue gas and raw flue gas) were selected. The elemental distribution, compositional variation, surface physicochemical structure and combustion reactivity of each sample were identified using elemental analysis, XPS, N2 adsorption, TGA and FOW methods. Oxidative torrefaction tended to optimize the fuel quality of biomass effectively, and the enhancement of torrefaction severity improved the fuel quality of wheat straw. The O2, CO2 and H2O in flue gas could synergistically enhance the desorption of hydrophilic structures during oxidative torrefaction process, especially at high temperatures. Meanwhile, the variations in microstructure of wheat straw promoted the conversion of N-A into edge nitrogen structures (N-5 and N-6), especially N-5, which is a precursor of HCN. Additionally, mild surface oxidation tended to promote the generation of some new oxygen-containing functionalities with high reactivity on the surface of wheat straw particles after undergoing oxidative torrefaction pretreatment. Due to the removal of hemicellulose and cellulose from wheat straw particles and the generation of new functional groups on the particle surfaces, the ignition temperature of each torrefied sample expressed an increasing tendency, while the Ea clearly decreased. According to the results obtained from this research, it could be concluded that torrefaction conducted in a raw flue gas atmosphere at 573 K would improve the fuel quality and reactivity of wheat straw most significantly.
Journal Article
Mechanistic Understanding of Tyrosinase Inhibition by Polymeric Proanthocyanidins from Acacia confusa Stem Bark and Their Effect on the Browning Resistance of Fresh-Cut Asparagus Lettuce
by
Liang, Dandan
,
Zhao, Yaying
,
Li, Guanghui
in
Acacia - metabolism
,
Acacia confusa
,
Antioxidants
2023
Tyrosinase inhibitors are capable of preventing unfavorable enzymatic browning of fruits and vegetables. In this study, the capacity of Acacia confusa stem bark proanthocyanidins (ASBPs) to inhibit tyrosinase activity was evaluated. ASBPs were shown to be a high-potential inhibitor of tyrosinase with IC50 values of 92.49 ± 4.70 and 61.74 ± 8.93 μg/mL when using L-tyrosine and L-DOPA as the substrate, respectively. The structural elucidation performed with UV-vis, FT-IR spectroscopy, ESI-MS and thiolysis coupled to HPLC-ESI-MS suggested that ASBPs had structural heterogeneity in monomer units and interflavan linkages and consisted mainly of procyanidins dominant with B-type linkages. To gain insights into the inhibitory mechanisms of ASBPs against tyrosinase, different spectroscopic and molecular docking methods were further conducted. Results validated that ASBPs possessed the ability to chelate copper ions and could prevent the oxidation process of substrates by tyrosinase. The hydrogen bond formed with Lys-376 residue played a key role in the binding force of ASBPs with tyrosinase that induced a certain alteration in the microenvironment and secondary structure of tyrosinase, resulting in the enzymatic activity being ultimately restricted. It was also observed that ASBPs treatment effectively inhibited the activities of PPO and POD to retard the surface browning of fresh-cut asparagus lettuce and thus extended their shelf-life. The results provided preliminary evidence supporting the exploitation of ASBPs into potential antibrowning agents for the fresh-cut food industry.
Journal Article
Mechanistic Understanding of Tyrosinase Inhibition by Polymeric Proanthocyanidins from IAcacia confusa/I Stem Bark and Their Effect on the Browning Resistance of Fresh-Cut Asparagus Lettuce
2023
Tyrosinase inhibitors are capable of preventing unfavorable enzymatic browning of fruits and vegetables. In this study, the capacity of Acacia confusa stem bark proanthocyanidins (ASBPs) to inhibit tyrosinase activity was evaluated. ASBPs were shown to be a high-potential inhibitor of tyrosinase with IC[sub.50] values of 92.49 ± 4.70 and 61.74 ± 8.93 μg/mL when using L-tyrosine and L-DOPA as the substrate, respectively. The structural elucidation performed with UV-vis, FT-IR spectroscopy, ESI-MS and thiolysis coupled to HPLC-ESI-MS suggested that ASBPs had structural heterogeneity in monomer units and interflavan linkages and consisted mainly of procyanidins dominant with B-type linkages. To gain insights into the inhibitory mechanisms of ASBPs against tyrosinase, different spectroscopic and molecular docking methods were further conducted. Results validated that ASBPs possessed the ability to chelate copper ions and could prevent the oxidation process of substrates by tyrosinase. The hydrogen bond formed with Lys-376 residue played a key role in the binding force of ASBPs with tyrosinase that induced a certain alteration in the microenvironment and secondary structure of tyrosinase, resulting in the enzymatic activity being ultimately restricted. It was also observed that ASBPs treatment effectively inhibited the activities of PPO and POD to retard the surface browning of fresh-cut asparagus lettuce and thus extended their shelf-life. The results provided preliminary evidence supporting the exploitation of ASBPs into potential antibrowning agents for the fresh-cut food industry.
Journal Article
Association between ambient air pollution and daily hospital admissions for ischemic stroke: A nationwide time-series analysis
2018
Evidence of the short-term effects of ambient air pollution on the risk of ischemic stroke in low- and middle-income countries is limited and inconsistent. We aimed to examine the associations between air pollution and daily hospital admissions for ischemic stroke in China.
We identified hospital admissions for ischemic stroke in 2014-2016 from the national database covering up to 0.28 billion people who received Urban Employee Basic Medical Insurance (UEBMI) in China. We examined the associations between air pollution and daily ischemic stroke admission using a two-stage method. Poisson time-series regression models were firstly fitted to estimate the effects of air pollution in each city. Random-effects meta-analyses were then conducted to combine the estimates. Meta-regression models were applied to explore potential effect modifiers. More than 2 million hospital admissions for ischemic stroke were identified in 172 cities in China. In single-pollutant models, increases of 10 μg/m3 in particulate matter with aerodynamic diameter <2.5 μm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) and 1 mg/m3 in carbon monoxide (CO) concentrations were associated with 0.34% (95% confidence interval [CI], 0.20%-0.48%), 1.37% (1.05%-1.70%), 1.82% (1.45%-2.19%), 0.01% (-0.14%-0.16%), and 3.24% (2.05%-4.43%) increases in hospital admissions for ischemic stroke on the same day, respectively. SO2 and NO2 associations remained significant in two-pollutant models, but not PM2.5 and CO associations. The effect estimates were greater in cities with lower air pollutant levels and higher air temperatures, as well as in elderly subgroups. The main limitation of the present study was the unavailability of data on individual exposure to ambient air pollution.
As the first national study in China to systematically examine the associations between short-term exposure to ambient air pollution and ischemic stroke, our findings indicate that transient increase in air pollution levels may increase the risk of ischemic stroke, which may have significant public health implications for the reduction of ischemic stroke burden in China.
Journal Article
Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer
2018
Background
Assembling evidences suggested that aberrant expression of tissue differentiation-inducing non-protein coding RNA (TINCR) intimately associated with variety of human cancer. However, the expression pattern and involvement of TINCR in breast cancer has not been fully investigated. Here we set out to analyze expression of TINCR in breast cancer and elucidate its mechanistic involvement in tumor incidence and progression.
Methods
The expression of TINCR was determined by q-PCR. SP1 binding sites were analyzed by ChIP-qPCR. The relative transcription activity was measured with luciferase reporter assay. Cell viability was measured with CCK-8 method. Clonogenic capacity was evaluated by soft agar assay. Cell apoptosis was analyzed by Annexin V/7-AAD staining. The migration and invasion were determined by trans-well assay and wound healing. The tumor growth in vivo was evaluated in xenograft mice model. Protein expression was quantified by immunoblotting.
Results
TINCR was aberrantly up-regulated by SP1, which in turn stimulated cell proliferation, anchorage-independent growth and suppressed cell apoptosis in breast cancer. TINCR silencing significantly suppressed migration and invasion in vitro and xenograft tumor growth in vivo. Mechanistically, TINCR modulated KLF4 expression via competing with miR-7, which consequently contributed to its oncogenic potential. MiR-7 inhibition severely compromised TINCR silencing-elicited tumor repressive effects.
Conclusion
Our data uncovered a crucial role of TINCR-miR-7-KLF4 axis in human breast cancer.
Journal Article
Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers
2014
Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g
−1
) and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.
Journal Article
Prevalence and correlates of depression and anxiety among Chinese international students in US colleges during the COVID-19 pandemic: A cross-sectional study
by
Song, Yanping
,
Dong, Wentian
,
Quan, Wenxiang
in
Anxiety
,
Anxiety - epidemiology
,
Anxiety - psychology
2022
Previous studies showed that the COVID-19 outbreak increased the levels of depression and anxiety in heterogeneous populations. However, none has explored the prevalence and correlates of depression and anxiety among Chinese international students studying in US colleges during the pandemic.
This study examines the prevalence of depression and anxiety among Chinese international students enrolled in US universities during the COVID-19 pandemic and identifies the associated factors, including habits, social and psychological support, sleep quality, and remote learning.
Between June and July 2020, we conducted a cross-sectional study through Wenjuanxing, a web-based survey platform. Participants were recruited with snowball sampling through 21 Chinese international student associations in US universities. The survey consisted of demographic questions, the Social Support Rating Scale (SSRS), the Insomnia Severity Index (ISI), the Patient Health Questionnaire-9 (PHQ-9), the General Anxiety Disorder-7 (GAD-7), and self-constructed questions on academic performance, financial concerns, use of social media, physical exercise, and psychological support. Cut-off scores of 10 were used for both PHQ-9 and GAD-7 to determine the binary outcomes of depression and anxiety, respectively. Bivariant analyses and multivariable logistic regression analyses were performed to identify the associated factors.
Among 1881 participants, we found a prevalence of depression (PHQ-9 score⩾ 10) at 24.5% and that of anxiety (GAD-7 score⩾ 10) at 20.7%. A higher risk of depression was associated with recent exposure to traumatic events, agreement to pandemic's negative impacts on financial status, agreement and strong agreement to the negative impacts of remote learning on personal relationships, and a higher ISI score. A lower risk of depression was associated with disagreement to the negative impacts of remote learning on academic performance and future careers, strong willingness to seek professional help with emotional issues, and a higher SSRS score. In addition, a higher risk of anxiety was associated with recent exposure to traumatic events, a lot of workloads, often staying up for online classes, agreement and strong agreement to the negative impacts of remote learning on personal relationships, and a higher ISI score. A lower risk of anxiety was associated with the willingness and strong willingness to seek professional help with emotional issues, and a higher SSRS score.
This study showed a high prevalence of depression and anxiety among Chinese international students studying in US colleges during the COVID-19 pandemic. Multiple correlates-including recent exposure to traumatic events, pandemic-related financial concerns, workload, social support, remote learning, willingness to seek professional help, and sleep quality-were identified. It is critical for future studies to further investigate this student population and for universities to provide more flexible learning options and more access to psychological services.
Journal Article
Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine
2017
Povidone-iodine (PVI) is principally used as an antimicrobial agent. It has been found that 0.5% PVI can attenuate congestion, edema and pain induced by pressure sores. Thus this study aimed to assess the effects of 0.5% PVI on acute skin wounds. Four full-thickness excisional wounds were generated on the dorsal skin of male Sprague-Dawley rats with a 10-mm sterile punch. Two wounds were left untreated and the other two were dressed with gauze with 0.5% PVI for 1 hour per day for the first 5 days after injury. 10-mm full-thickness excisional wounds were also generated on the dorsal skin of rats treated with 10 mg/kg SB431542 and all wounds were treated with 0.5% PVI for 5 days. PVI treatment enhanced wound healing via promotion of expression of α SMA and TGF β, neovascularization and re-epithelialization. Interleukin 6 was reduced following PVI treatment. Inhibition of TGF β abolished the effect of PVI treatment on wound closure. These data show that topical application of 0.5% PVI could promote acute skin wound healing though increased expression of TGF β leading to enhanced formation of granulation tissue, even in the absence of obvious infection.
Journal Article
Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis
2021
Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190
Camellia
accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var.
sinensis
and var.
assamica
. It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of
Camellia sinensis
and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops.
Haplotype-resolved genome assembly of an Oolong tea cultivar Tieguanyin and population genomic analyses of 190
Camellia
accessions provide insights into the evolutionary history of the tea plant
Camellia sinensis
.
Journal Article