Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
16,677
result(s) for
"Zheng, Ma"
Sort by:
Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant
2018
Over the past decades, there has been increasing attention on polyphenol-rich foods including fruits and vegetables on human health. Polyphenols have been shown to possess some potential beneficial effects on human health and they are widely found in foods consumed by populations worldwide. Capparis spinosa (C. spinosa) is an important source of different secondary metabolites of interest to humankind. The traditional therapeutic applications of C. spinosa have been reported in Ancient Romans. Numerous bioactive phytochemical constituents have been isolated and identified from different parts (aerial parts, roots and seeds) of C. spinosa which are responsible alone or in combination for its various pharmacological activities. Therefore, this paper is a review of publications on the phytochemical and pharmacological properties of C. spinosa. There is insufficient evidence to suggest that C. spinosa or its extracts are able to improve the biomarkers of cardiovascular disease and diabetes. However, these studies used different parts of C. spinosa plant, methods of preparation and types of solvents, which cause the evaluation of activity of C. spinosa difficult and involve quite heterogeneous data. There is also evidence, although limited, to suggest benefits of C. spinosa in improving human health. Therefore, the relationship between C. spinosa and improved human health outcomes requires further study.
Journal Article
Energy metaverse: the conceptual framework with a review of the state-of-the-art methods and technologies
2023
The transition to green energy systems is vital for addressing climate change, with a focus on renewable sources like wind and solar. This change requires substantial investment, societal adaptations, and managing a complex energy ecosystem. However, no existing evaluation methods support this purpose. The \"energy metaverse\" is proposed as a digital platform that mirrors the energy ecosystem, enabling the design, trial, and assessment of new technologies, business models, and value chains before real-world deployment. Drawing from State-of-the-Art technologies and methodologies, this paper introduces a conceptual framework for the energy metaverse, comprising five essential components: a versatile energy ecosystem data space, an interoperable virtual ecosystem living lab, an energy system models and artificial intelligent algorithms sandbox, a circular value chain co-design toolbox, and an ecosystem lifecycle evaluation software tool. This paper also suggests specific methods and technologies to develop each of these five components of the energy metaverse.
Journal Article
Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study
by
Zhang, Yingfei
,
Ma, Zheng Feei
in
Adult
,
Anxiety - epidemiology
,
Asian Continental Ancestry Group
2020
Our study aimed to investigate the immediate impact of the COVID-19 pandemic on mental health and quality of life among local Chinese residents aged ≥18 years in Liaoning Province, mainland China. An online survey was distributed through a social media platform between January and February 2020. Participants completed a modified validated questionnaire that assessed the Impact of Event Scale (IES), indicators of negative mental health impacts, social and family support, and mental health-related lifestyle changes. A total of 263 participants (106 males and 157 females) completed the study. The mean age of the participants was 37.7 ± 14.0 years, and 74.9% had a high level of education. The mean IES score in the participants was 13.6 ± 7.7, reflecting a mild stressful impact. Only 7.6% of participants had an IES score ≥26. The majority of participants (53.3%) did not feel helpless due to the pandemic. On the other hand, 52.1% of participants felt horrified and apprehensive due to the pandemic. Additionally, the majority of participants (57.8–77.9%) received increased support from friends and family members, increased shared feeling and caring with family members and others. In conclusion, the COVID-19 pandemic was associated with mild stressful impact in our sample, even though the COVID-19 pandemic is still ongoing. These findings would need to be verified in larger population studies.
Journal Article
Correction: A stage IV lung squamous cell cancer patient with brain metastases, high PD-L1 &TMB, achieves pCR and long-term survival after immune-chemotherapy and radical surgery: a case report and literature review
2025
[This corrects the article DOI: 10.3389/fimmu.2025.1601125.].
Journal Article
Uniformly accurate machine learning-based hydrodynamic models for kinetic equations
by
Ma, Zheng
,
E, Weinan
,
Han, Jiequn
in
Applied Mathematics
,
Free molecular flow
,
Kinetic equations
2019
A framework is introduced for constructing interpretable and truly reliable reduced models for multiscale problems in situations without scale separation. Hydrodynamic approximation to the kinetic equation is used as an example to illustrate the main steps and issues involved. To this end, a set of generalized moments are constructed first to optimally represent the underlying velocity distribution. The well-known closure problem is then solved with the aim of best capturing the associated dynamics of the kinetic equation. The issue of physical constraints such as Galilean invariance is addressed and an active-learning procedure is introduced to help ensure that the dataset used is representative enough. The reduced system takes the form of a conventional moment system and works regardless of the numerical discretization used. Numerical results are presented for the BGK (Bhatnagar–Gross–Krook) model and binary collision of Maxwell molecules. We demonstrate that the reduced model achieves a uniform accuracy in a wide range of Knudsen numbers spanning from the hydrodynamic limit to free molecular flow.
Journal Article