Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
253 result(s) for "Zheng, Wen-Bin"
Sort by:
Toxocariasis: a silent threat with a progressive public health impact
Background Toxocariasis is a neglected parasitic zoonosis that afflicts millions of the pediatric and adolescent populations worldwide, especially in impoverished communities. This disease is caused by infection with the larvae of Toxocara canis and T. cati , the most ubiquitous intestinal nematode parasite in dogs and cats, respectively. In this article, recent advances in the epidemiology, clinical presentation, diagnosis and pharmacotherapies that have been used in the treatment of toxocariasis are reviewed. Main text Over the past two decades, we have come far in our understanding of the biology and epidemiology of toxocariasis. However, lack of laboratory infrastructure in some countries, lack of uniform case definitions and limited surveillance infrastructure are some of the challenges that hindered the estimation of global disease burden. Toxocariasis encompasses four clinical forms: visceral, ocular, covert and neural. Incorrect or misdiagnosis of any of these disabling conditions can result in severe health consequences and considerable medical care spending. Fortunately, multiple diagnostic modalities are available, which if effectively used together with the administration of appropriate pharmacologic therapies, can minimize any unnecessary patient morbidity. Conclusions Although progress has been made in the management of toxocariasis patients, there remains much work to be done. Implementation of new technologies and better understanding of the pathogenesis of toxocariasis can identify new diagnostic biomarkers, which may help in increasing diagnostic accuracy. Also, further clinical research breakthroughs are needed to develop better ways to effectively control and prevent this serious disease.
Proteomic analysis and functional characterization of excretory-secretory products from adult Toxocara canis: insights into parasite–host interactions
Background Toxocara canis is a globally distributed zoonotic nematode with significant public health implications. While previous studies have explored the excretory-secretory (ES) proteins of third-stage larvae (L3) and the non-protein components of adult excretory-secretory products (ESPs), a comprehensive molecular characterization of ES proteins from adult T. canis remains lacking. Methods ES proteins from female and male adult T. canis were profiled using an Orbitrap Astral mass spectrometer. Proteins with differential abundance (PDAs) between sexes were analyzed for subcellular localization, transcription factor, conserved domain, GO term and KEGG pathway enrichment. Immune-interacting ES proteins were identified via co-immunoprecipitation (Co-IP) followed by mass spectrometry. Results A total of 2,513 ES proteins were identified, including 1,516 shared between female and male adults. Among these, 180 proteins were upregulated and 310 were downregulated between sexes. Additionally, 292 and 117 proteins were uniquely expressed in females and males, respectively. Many ES proteins were enriched in key signaling pathways, including PI3K-Akt, Rap1, MAPK, and JAK-STAT. Co-IP analysis revealed 150 immune-interacting ES proteins, such as 14-3-3-like protein 2, 26 S protease regulatory subunit, tubulin, heat shock protein 70, and enolase. Importantly, 74 proteins were common to both the Co-IP and direct proteomic datasets. Conclusions This study provides the first comprehensive proteomic profile of ES proteins from adult T. canis , including those interacting with host immune components. These findings enhance our understanding of parasite–host interactions and offer promising targets for novel therapeutic interventions against zoonotic toxocariasis.
Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts
Background The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. Results Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority ( n  = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica , gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. Conclusions Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
The Toxoplasma monocarboxylate transporters are involved in the metabolism within the apicoplast and are linked to parasite survival
The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii . Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.
Differential miRNA expression profiles in the bone marrow of Beagle dogs at different stages of Toxocara canis infection
Background Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. Results Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1 , enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. Conclusions These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.
Specific Characteristic of Hyperplastic Callus in a Larger Cohort of Osteogenesis Imperfecta Type V
Hyperplastic callus (HPC) is the most conspicuous features of osteogenesis imperfecta (OI) type V, of which accurate diagnosis and treatment are facing challenges. We investigate the clinical features, and impact factors of HPC in OI type V patients. In this retrospective single-center study, a total of 21 patients with type V OI confirmed by IFITM5 mutation were included. Radiological characteristics of bone were evaluated by X-rays, dual-energy X-ray absorptiometry, and computed tomography scan. Bone biopsy specimens were performed and stained by routine hematoxylin–eosin. The effects of bisphosphonates on HPC were investigated. Eleven patients (52.3%) had HPCs at 19 skeletal sites, 11 of which affected the femur. Three patients developed four (21.1%) HPCs after fractures, and 15 (78.9%) HPCs occurred in absence of bone fracture. The progress of HPCs was variable, of which most HPCs enlarged in the initial phase and remained stable, and only one HPC dwindled in size. One patient had a rapidly growing mass on the right humerus, and biopsy showed irregular trabeculae of woven bone and immature bone and cartilage in the loose and edematous collagenous network without signs of tumor. Bisphosphonates treatment had no significant effects on HPC of OI patients. HPC is the specific characteristic of OI type V patients, and its location, shape, size, and progression are variable, and the femur is the most frequently involved site. It is very important to make a diagnosis of HPC through detecting IFITM5 mutation and completing pathological diagnosis if necessary. The treatment of HPC is worth further exploration.
Effects of Bisphosphonates on Osteoporosis Induced by Duchenne Muscular Dystrophy: A Prospective Study
Duchenne muscular dystrophy (DMD) is a severe X-linked progressive neuromuscular disease that brings a significantly increased risk of osteoporosis and bone fractures. We prospectively evaluated the effects of oral and intravenous bisphosphonates on the bones of children with DMD. This study included a total of 52 children with DMD. They were divided into zoledronic acid (ZOL), alendronate (ALN), and control groups according to bone mineral density (BMD) and history of fragility fractures. For 2 years, all patients took calcium, vitamin D, and calcitriol. Meanwhile, 17 patients received infusions of ZOL, and 18 patients received ALN. BMD, serum levels of alkaline phosphatase (ALP) and the cross-linked C-telopeptide of type I collagen (β-CTX) were evaluated. After 24 months of treatment, the percentage changes in lumbar spine BMD were 23.2 ± 9.7% and 23.6 ± 8.8% in the ZOL and ALN groups (all P<.01 vs. baseline). The increases did not differ between the ZOL and ALN groups, but were significantly larger than those of the control group (P<.01). Serum β-CTX and ALP levels, respectively, were decreased by 44.4 ± 18.0% and 31.9 ± 26.7% in the ZOL group and by 36.0 ± 20.3% and 25.8 ± 14.4% in the ALN group (all P<.01 vs. baseline). Zoledronic acid and alendronate had similar protective effects to increase bone mineral density and reduce bone resorption in children with DMD, which were superior to treatment of calcium, vitamin D, and calcitriol. 25OHD = 25 hydroxyvitamin D; ALN = alendro-nate; ALP = alkaline phosphatase; ALT = alanine aminotransferase; BMD = bone mineral density; BP = bisphosphonate; Ca = calcium; β-CTX = cross-linked C-telopeptide of type I collagen; DMD = Duchenne muscular dystrophy; FN = femoral neck; GC = glucocorticoid; LS = lumbar spine; ZOL = zoledronic acid.
Proteomic change in the upper lobe of the left lung of Beagle dogs at the lung migration stage of Toxocara canis infection
Background Toxocara canis is considered one of the most neglected parasitic zoonoses and threatens the health of millions of people worldwide with a predilection for pediatric and adolescent populations in impoverished communities. Exploring the invasion and developmental mechanisms associated with T. canis infection in its definitive canine hosts will help to better control zoonotic toxocariasis. Methods Proteomic changes in samples from the upper lobe of the left lung of Beagle puppies were systematically analyzed by quantitative proteomic technology of data-independent acquisition (DIA) at 96 h post-infection (hpi) with T. canis . Proteins with P -values < 0.05 and fold change > 1.5 or < 0.67 were considered proteins with differential abundance (PDAs). Results A total of 28 downregulated PDAs and 407 upregulated PDAs were identified at 96 hpi, including RhoC, TM4SFs and LPCAT1, which could be associated with the maintenance and repair of lung homeostasis. GO annotation and KEGG pathway enrichment analyses of all identified proteins and PDAs revealed that many lung proteins have correlation to signal transduction, lipid metabolism and immune system. Conclusions The present study revealed lung proteomic alterations in Beagle dogs at the lung migration stage of T. canis infection and identified many PDAs of Beagle dog lung, which may play important roles in the pathogenesis of toxocariasis, warranting further experimental validation. Graphical Abstract
Toxoplasma gondii disrupts intestinal microbiota and host metabolism in a rat model
Toxoplasma gondii infection disrupts the gut microbiota and host systemic metabolism, which plays a key role in the pathophysiology of toxoplasmosis. To investigate these interactions, we conducted metagenomic sequencing and untargeted serum metabolomics on 18 Sprague-Dawley rats across control, acute, and chronic stages of infection. De novo assembly of 148 Gb of high-quality reads produced a comprehensive non-redundant microbial gene catalog comprising over 5.7 million genes. Infection led to a marked reduction in microbial diversity and significant shifts in community structure. Chronic infection, in particular, was characterized by the enrichment of Lactobacillus johnsonii , Lactobacillus intestinalis , and Limosilactobacillus reuteri , alongside a marked depletion of Akkermansia muciniphila and Rothia nasimurium . These compositional changes coincided with reduced abundance of carbohydrate-active enzymes, suggesting impaired microbial metabolic capacity. Pathway analysis revealed distinct, stage- and gut-region-specific metabolic disruptions, including suppressed amino acid and energy metabolism, and enhanced glycan and carbohydrate pathways during chronic infection. Untargeted LC-MS/MS profiling uncovered 883 differentially abundant serum metabolites, enriched in pathways related to amino acid metabolism, bile acid transformation, and aromatic compound processing. Importantly, L. johnsonii and L. reuteri were positively correlated with metabolites implicated in immune modulation and oxidative stress response, whereas A. muciniphila showed negative associations. These findings demonstrate that T. gondii infection orchestrates a coordinated host–microbiota–metabolome network, advancing our understanding of disease mechanisms and pointing to novel microbial and metabolic targets for therapy.
Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis
Background Toxocara canis , a globally distributed roundworm, can cause debilitating disease in dogs and humans; however, little is known about the metabolomic response of the hosts to T. canis infection. There is an increasing need to understand the metabolic mechanisms underlying the pathogenesis of T. canis infection in dogs. Here, we examined the metabolomic changes in Beagle dogsʼ serum following T. canis infection using LC-MS/MS. Results The metabolic profiles of Beagle dogsʼ serum were determined at 12 h, 24 h, 10 d and 36 d after oral infection with 300 infectious T. canis eggs by LC-MS/MS. We tested whether the T. canis -associated differentially abundant metabolites could distinguish the serum of infected dogs from controls, as measured by the area under the receiver operating characteristic (ROC) curve (AUC). The differentially expressed metabolites were further evaluated by principal components analysis and pathway enrichment analysis. A total of 5756 and 5299 ions were detected in ESI+ and ESI− mode, respectively. ROC curve analysis revealed nine and five metabolite markers, at 12 hpi and 24 hpi to 36 dpi, respectively, with potential diagnostic value for toxocariasis. The levels of taurocholate, estradiol, prostaglandins and leukotriene were significantly changed. Primary bile acid biosynthesis pathway, steroid hormone biosynthesis pathway and biosynthesis of unsaturated fatty acids pathway were significantly altered by T. canis infection. Conclusions These findings show that T. canis infection can induce several changes in the dog serum metabolome and that the metabolic signature associated with T. canis infection in dogs has potential for toxocariasis diagnosis.