Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"Zheng, Yinjian"
Sort by:
Effects of Supplementary Blue and UV-A LED Lights on Morphology and Phytochemicals of Brassicaceae Baby-Leaves
2020
Brassicaceae baby-leaves are good source of functional phytochemicals. To investigate how Chinese kale and pak-choi baby-leaves in response to different wavebands of blue (430 nm and 465 nm) and UV-A (380 nm and 400 nm) LED, the plant growth, glucosinolates, antioxidants, and minerals were determined. Both agronomy traits and phytochemical contents were significantly affected. Blue and UV-A light played a predominant role in increasing the plant biomass and morphology, as well as the contents of antioxidant compounds (vitamin C, vitamin E, phenolics, and individual flavonols), the antioxidant activity (DPPH and FRAP), and the total glucosinolates accumulation. In particular, four light wavebands significantly decreased the content of progoitrin, while 400 nm UV-A light and 430 nm blue light were efficient in elevating the contents of sinigrin and glucobrassicin in Chinese kale. Meanwhile, 400 nm UV-A light was able to increase the contents of glucoraphanin, sinigrin, and glucobrassicin in pak-choi. From the global view of heatmap, blue lights were more efficient in increasing the yield and phytochemical levels of two baby-leaves.
Journal Article
Effects of Red and Blue Light on the Growth, Photosynthesis, and Subsequent Growth under Fluctuating Light of Cucumber Seedlings
2024
The effects of red and blue light on growth and steady-state photosynthesis have been widely studied, but there are few studies focusing on dynamic photosynthesis and the effects of LED pre-treatment on cucumber seedlings’ growth, so in this study, cucumber (Cucumis sativus L. cv. Jinyou 365) was chosen as the test material. White light (W), monochromatic red light (R), monochromatic blue light (B), and mixed red and blue lights with different red-to-blue ratios (9:1, 7:3, 5:5, 3:7, and 1:9) were set to explore the effects of red and blue light on cucumber seedlings’ growth, steady-state photosynthesis, dynamic photosynthesis, and subsequent growth under fluctuating light. The results showed that compared with R and B, mixed red and blue light was more suitable for cucumber seedlings’ growth, and the increased blue light ratios would decrease the biomass of cucumber seedlings under mixed red and blue light; cucumber seedlings under 90% red and 10% blue mixed light (9R1B) grew better than other treatments. For steady-state photosynthesis, blue light decreased the actual net photosynthetic rate but increased the maximum photosynthetic capacity by promoting stomatal development and opening; 9R1B exhibited higher actual net photosynthetic rate, but the maximum photosynthetic capacity was low. For dynamic photosynthesis, the induction rate of photosynthetic rate and stomatal conductance were also accelerated by blue light. For subsequent growth under fluctuating light, higher maximum photosynthetic capacity and photoinduction rate could not promote the growth of cucumber seedlings under subsequent fluctuating light, while seedlings pre-treated with 9R1B and B grew better under subsequent fluctuating light due to the high plant height and leaf area. Overall, cucumber seedlings treated with 9R1B exhibited the highest biomass and it grew better under subsequent fluctuating light due to the higher actual net photosynthetic rate, plant height, and leaf area.
Journal Article
UV-A Supplement Improved Growth, Antioxidant Capacity, and Anthocyanin Accumulation in Purple Lettuce (Lactuca sativa L.)
2023
This study investigated the impact of various light qualities on the growth, photosynthesis, antioxidant capacity, anthocyanin accumulation and associated gene expression in purple lettuce. The results showed that stem diameter, leaf number and dry mass of purple leaves lettuce increased significantly under white light plus red and blue light (WRB) plus 10 µmol·m−2·s−1 UV-A (SUV1), plus 20 µmol·m−2·s−1 UV-A (SUV2) and plus 30 µmol·m−2·s−1 UV-A (SUV3) treatments compared to white light plus red and blue light (WRB). Leaf expansion decreased with increasing UV-A doses, while fresh leaf mass was higher under SUV1 and SUV2 treatments. Photosynthesis parameters were improved under WRB, SUV1 and SUV2 treatments, with an increase in net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) and a decrease in intercellular carbon dioxide concentration (Ci) under SUV3 treatment. Superoxide radical generation rate, hydrogen peroxide and malondialdehyde (MDA) content and relative conductivity increased significantly under SUV3 treatment. Anthocyanin content increased significantly with increasing doses of UV-A treatment, while related structural gene expression levels were upregulated more significantly by SUV2 and SUV3 treatments than WRB treatment. In summary, moderate UV-A supplementation can enhance the antioxidant system and promote anthocyanin accumulation in purple lettuce. Specifically, WRB plus 20 µmol·m−2·s−1 UV-A (SUV2) is recommended as an optimal light recipe for cultivating purple lettuce in protected horticulture.
Journal Article
UVA Enhanced Promotive Effects of Blue Light on the Antioxidant Capacity and Anthocyanin Biosynthesis of Pak Choi
by
Liu, Xinying
,
Lei, Bingfu
,
Bian, Zhonghua
in
Agricultural research
,
Anthocyanin
,
anthocyanin biosynthesis
2022
Anthocyanins are widely common natural antioxidants and represent an important economic feature in vegetables, but the potential response of UVA–blue co-irradiation on the anthocyanin biosynthesis of pak choi is not clear. Here, we investigated the effects of the supplement of four doses of UVA to blue light on growth, metabolites and the anthocyanin biosynthesis of two cultivars of pak choi. The results revealed that supplementing UVA light to blue light positively affected the growth of the pak choi and elevated the soluble protein content and antioxidant capacity. Especially, when compared with a monochromatic blue light, the anthocyanin synthesis was enhanced with an increase in UVA light strength, which reached a peak value at the strength of 10 μmol·m−2·s−1. Further study revealed that the UVA–blue co-irradiation enhanced the transcription of partial light-induced and anthocyanin structural genes. The intraspecific difference in the expression patterns of MYB1 and PAP1 were observed in these two tested cultivars. MYB1 was significantly up-regulated in red-leaf pak choi, but down-regulated in purple-leaf pak choi. On the contrary, PAP1 was significantly up-regulated in purple-leaf pak choi, but down-regulated in red-leaf pak choi. To sum up, this study established an efficient pre-harvest lighting strategy to elevate the economic value of pak choi.
Journal Article
Experimental verification of a CFD model for the closed plant factory under artificial lighting
2020
A computational fluid dynamics (CFD) model for the closed plant factory under artificial lighting has been developed in this study, the experimental verification of CFD model with the air velocity value was compared with the measured air temperature value. The results showed that the mean relative error of validation with the air velocity was 15%, and comparable with experimentally observed air temperature profile inside the plant factory with RMSE of 3% which show the utility of CFD to study plant factory microclimatic parameters.
Journal Article
Appropriate Nitrogen form Ratio and UV-A Supplementation Increased Quality and Production in Purple Lettuce (Lactuca sativa L.)
2023
Purple lettuce (Lactuca sativa L. cv. Zhongshu Purple Lettuce) was chosen as the trial material, and LED intelligent light control consoles were used as the light sources. The purpose was to increase the yield and quality of purple lettuce while lowering its nitrate level. By adding various ratios of NO3−-N and NH4+-N to the nutrient solution and 20 µmol m−2 s−1 UV-A based on white, red, and blue light (130, 120, 30 µmol m−2 s−1), the effects of different NO3−-N/NH4+-N ratios (NO3−-N, NO3−-N/NH4+-N = 3/1, NH4+-N) and UV-A interaction on yield, quality, photosynthetic characteristics, anthocyanins, and nitrogen assimilation of purple lettuce were studied. In order to produce purple lettuce hydroponically under controlled environmental conditions, a theoretical foundation and technological specifications were developed, taking into account an appropriate UV-A dose and NO3−-N/NH4+-N ratio. Results demonstrate that adding a 20 µmol m−2 s−1 UV-A, and a NO3−-N/NH4+-N treatment of 3/1, significantly reduced the nitrate level while increasing the growth, photosynthetic rate, chlorophyll, carotenoid, and anthocyanin content of purple lettuce. The purple leaf lettuce leaves have an enhanced capacity to absorb nitrogen. Furthermore, plants have an acceleration of nitrogen metabolism, which raises the concentration of free amino acids and soluble proteins and promotes biomass synthesis. Thus, based on the NO3−-N/NH4+-N (3/1) treatment, adding 20 µmol m−2 s−1 UV-A will be helpful in boosting purple lettuce production and decreasing its nitrate content.
Journal Article
Mechanism of CO2 Enrichment Alleviated Drought Stress in the Roots of Cucumber Seedlings Revealed via Proteomic and Biochemical Analysis
by
Zhang, Dalong
,
Zhang, Wendong
,
Li, Yiman
in
Agricultural production
,
Amino acids
,
Antioxidants
2022
Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 μmol·mol−1 and 800 ± 40 μmol·mol−1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.
Journal Article
Mechanism of CO2 Enrichment Alleviated Drought Stress in the Roots of Cucumber Seedlings Revealed via Proteomic and Biochemical Analysis
2022
Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 μmol·mol-1 and 800 ± 40 μmol·mol-1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 μmol·mol-1 and 800 ± 40 μmol·mol-1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.
Journal Article
Molecular identification and phylogenetic analysis of mitogenome of the Xenocypris davidi from Cao'e River
by
Zhu, Yinjian
,
Xu, Haifang
,
Zheng, Daheng
in
Conservation genetics
,
Conserved sequence
,
Evolutionary conservation
2019
In this study, the complete mitochondrial genome sequence of a Xenocypris davidi from Cao'e River was sequenced. The complete mitogenome of X. davidi was 16,630 bp in length, it contains the structure of 22 transfer RNA genes, 13 protein coding genes, 2 ribosomal RNA genes, and 1 non-coding region. The gene arrangement and organization in the mitogenome of X. davidi were in accordance with other Cyprinidae fishes. The results of phylogenetic analysis revealed that the mitochondrial genome sequence could provide useful information for the conservation genetics and evolution study of X. davidi.
Journal Article