Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
20,933 result(s) for "Zhi, Wei"
Sort by:
من أجلك مستقبلا :‪‪‪ رسالة إلى ابنتي /‪‪
يطرح هذا الكتاب رسائل في مجال علم النفس التربوي تقدمها لنا الأديبة الصينية يان جيان لينغ عن طبيعة الفتاة وكيفية التعامل معها والطرق السليمة للتربية وذلك من خلال مواقف حياتية حقيقية تسردها بأسلوب أدبي شيق، ويعد ذلك الكتاب مفتاح الدخول إلى عالم الفتاة، لذا فهو مفيد لكل الآباء والأمهات في التعرف على طرق التربية الصحيحة.‪‪‪
The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy
Cancer immunotherapy has recently shown promising antitumor effects in various types of tumors. Among all immune checkpoints, the PD-1/PD-L1 pathway plays an important role in the immune evasion of tumor cells, making it a potent target in antitumor immunity. Accordingly, antibodies targeting the PD-1/PD-L1 pathway have been developed to attack tumor cells; however, resistance to immune therapy remains to be solved. Hence, identification of the underlying modulators of the PD-1/PD-L1 pathway is of significant importance to understand the mechanisms of antitumor immunotherapy. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been identified to regulate the PD-1/PD-L1 pathway, leading to participation in the immune response and immunotherapy. Therefore, this review focuses on the functions of lncRNAs and circRNAs in regulation of the PD-1/PD-L1 axis in tumorigenesis and tumor progression. We hope this review will stimulate research to supply more precise and effective cancer immune checkpoint therapies for a large number of tumors.
من أجلك مستقبلا : رسالة إلى ابنتي
يطرح هذا الكتاب رسائل في مجال علم النفس التربوي تقدمها لنا الأديبة الصينية يان جيان لينغ عن طبيعة الفتاة وكيفية التعامل معها والطرق السليمة للتربية وذلك من خلال مواقف حياتية حقيقية تسردها بأسلوب أدبي شيق، ويعد ذلك الكتاب مفتاح الدخول إلى عالم الفتاة، لذا فهو مفيد لكل الآباء والأمهات في التعرف على طرق التربية الصحيحة.
Dark confinement and chiral phase transitions: gravitational waves vs matter representations
A bstract We study the gravitational-wave signal stemming from strongly coupled models featuring both, dark chiral and confinement phase transitions. We therefore identify strongly coupled theories that can feature a first-order phase transition. Employing the Polyakov-Nambu-Jona-Lasinio model, we focus our attention on SU(3) Yang-Mills theories featuring fermions in fundamental, adjoint, and two-index symmetric representations. We discover that for the gravitational-wave signals analysis, there are significant differences between the various representations. Interestingly we also observe that the two-index symmetric representation leads to the strongest first-order phase transition and therefore to a higher chance of being detected by the Big Bang Observer experiment. Our study of the confinement and chiral phase transitions is further applicable to extensions of the Standard Model featuring composite dynamics.
Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer
Preferentially expressed antigen in melanoma (PRAME), which belongs to the cancer/testis antigen (CTA) gene family, plays a pivotal role in multiple cellular processes and immunotherapy response in human cancers. PRAME is highly expressed in different types of cancers and is involved in cell proliferation, apoptosis, differentiation and metastasis as well as the outcomes of patients with cancer. In this review article, we discuss the potential roles and physiological functions of PRAME in various types of cancers. Moreover, this review highlights immunotherapeutic strategies that target PRAME in human malignancies. Therefore, the modulation of PRAME might be useful for the treatment of patients with cancer.
Large plasticity in magnesium mediated by pyramidal dislocations
Lightweight magnesium alloys are attractive as structural materials for improving energy efficiency in applications such as weight reduction of transportation vehicles. One major obstacle for widespread applications is the limited ductility of magnesium, which has been attributed to 〈c + a〉 dislocations failing to accommodate plastic strain. We demonstrate, using in situ transmission electron microscope mechanical testing, that 〈c + a〉 dislocations of various characters can accommodate considerable plasticity through gliding on pyramidal planes. We found that submicrometer-size magnesium samples exhibit high plasticity that is far greater than for their bulk counterparts. Small crystal size usually brings high stress, which in turn activates more 〈c + a〉 dislocations in magnesium to accommodate plasticity, leading to both high strength and good plasticity.
Combining theory and experiment in electrocatalysis
Chemists have known how to use electricity to split water into hydrogen and oxygen for more than 200 years. Nonetheless, because the electrochemical route is inefficient, most of the hydrogen made nowadays comes from natural gas. Seh et al. review recent progress in electrocatalyst development to accelerate water-splitting, the reverse reactions that underlie fuel cells, and related oxygen, nitrogen, and carbon dioxide reductions. A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other. Science , this issue p. 10.1126/science.aad4998 Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
The NF‐Y‐PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance
Summary Drought and salt stresses impose major constraints on soybean production worldwide. However, improving agronomically valuable soybean traits under drought conditions can be challenging due to trait complexity and multiple factors that influence yield. Here, we identified a nuclear factor Y C subunit (NF‐YC) family transcription factor member, GmNF‐YC14, which formed a heterotrimer with GmNF‐YA16 and GmNF‐YB2 to activate the GmPYR1‐mediated abscisic acid (ABA) signalling pathway to regulate stress tolerance in soybean. Notably, we found that CRISPR/Cas9‐generated GmNF‐YC14 knockout mutants were more sensitive to drought than wild‐type soybean plants. Furthermore, field trials showed that overexpression of GmNF‐YC14 or GmPYR1 could increase yield per plant, grain plumpness, and stem base circumference, thus indicating improved adaptation of soybean plants to drought conditions. Taken together, our findings expand the known functional scope of the NF‐Y transcription factor functions and raise important questions about the integration of ABA signalling pathways in plants. Moreover, GmNF‐YC14 and GmPYR1 have potential for application in the improvement of drought tolerance in soybean plants.