Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
427
result(s) for
"Zhou, Bingbing"
Sort by:
“What Kind of a Science is Sustainability Science?” An Evidence-Based Reexamination
2018
Sustainability science (SS), rooted in multiple disciplines, has been developing rapidly during the last two decades and become a well-recognized new field of study. However, the “identity” of SS remains unclear. Therefore, this study was intended to help synthesize the key characteristics of SS by revisiting the question raised by the leading sustainability scientist, Robert Kates (2011): “What kind of a science is sustainability science?” Specifically, we reviewed the literature in SS, and developed a synthesis of definitions and core research questions of SS, using multiple methods including change-point detection, word cloud visualization, and content and thematic analyses. Our study has produced several main findings: (1) the development of SS exhibited an S-shaped growth pattern, with an exponential growth phase through to 2012, and a asymptotic development phase afterwards; (2) ten key elements from the existing definitions of SS were identified, of which understanding “human–environment interactions” and “use-inspired” were most prominent; and (3) sixteen core questions in SS were derived from the literature. We further proposed an eight-theme framework of SS to help understand how the sixteen questions are related to each other. We argue that SS is coming of age, but more integrative and concerted efforts are still needed to further consolidate its identity by developing a coherent and rigorous scientific core.
Journal Article
Farmland Dynamics and Its Grain Production Efficiency and Ecological Security in China’s Major Grain-Producing Regions between 2000 and 2020
2023
Understanding the land use/cover changes associated with agricultural production is essential for food security in increasingly urbanizing areas. Such studies have been widely conducted in different regions of China; yet, its major grain-producing regions (MGPRs) remain less studied. To address this knowledge gap, we conducted analyses of the land use conversion matrix, spatial hot spots, decoupling, and index evaluation from a spatiotemporal perspective, to quantify the MGPRs’ farmland changes and its grain production efficiency and ecological security during 2000–2020. The results showed the following: (1) Farmland in the MGPRs experienced a net decline of 2.54 × 104 km2, with significant spatial heterogeneity in the area, extent, and speed of loss/gain. (2) Farmland gain came from mostly forest, grassland, and unused land, with hotspots in northeastern China, while farmland loss increasingly changed to construction lands, with hotspots covering east-central China and in the suburbs surrounding capital cities. (3) Grain production in the MGPRs increased by 1.6 times in the past 20 years, via its strong decoupling from farmland quantity in especially central-eastern China. (4) Land ecological security in the MGPRs was less secure but has been improving with non-homogeneous regional differences, while it demonstrated a spatial pattern of “higher security in the north–south and lower in the middle”. Our findings suggested that China’s MGPRs would continue to lose farmland and China’s food security should require a sustainable decoupling of grain production and farmland quantity while maintaining ecological security. This study has significant policy implications for farmland conservation in China’s MGPRs, as well as highlighting the landscape sustainability opportunities of urbanization-associated farmland loss in densely populated human–environment systems in general.
Journal Article
Association between preoperative anemia and postoperative short-term outcomes in patients undergoing colorectal cancer surgery - a propensity score matched retrospective cohort study
2023
Background
Based on previous studies which failed to analyze important confounding variables, the association between preoperative anemia and outcomes of patients who underwent colorectal cancer (CRC) surgery has not been clearly demonstrated. This study aimed to investigate the relationship between preoperative anemia and short-term outcomes in patients with CRC.
Methods
Data from a retrospective collective database of patients who underwent CRC surgery at our hospital between September 1, 2019 and September 30, 2021 were retrieved and analyzed, and the short-term postoperative outcomes of anemic (hemoglobin < 120 g dL
− 1
for female, hemoglobin < 130 g dL
− 1
for male) and non-anemic patients were analyzed, using a 1:1 propensity score matching (PSM) analysis.
Results
After excluding some cases, the remaining 1894 patients had complete data available for analysis. The incidence of preoperative anemia was 39.8% (754/1894). Before PSM, preoperative anemia patients had a higher risk of major morbidity than non-anemia patients (27.2% vs. 23.1%, odds ratio [OR] 1.245, 95% confidence interval [CI] 1.008–1.538,
P
= 0.042). After PSM was performed in the cohort, 609 patients remained in the anemic and non-anemic groups. The incidence of major morbidity (25.8% vs. 24.0%, OR 1.102, 95% CI 0.849–1.429,
P
= 0.446) between anemic and non-anemic patients was comparable. No significant difference was found between the anemic and non-anemic groups in postoperative length of stay (8.0 [6.0–12.0] vs. 8.0 [7.0–11.0],
P
= 0.311). The sensitivity analysis results were in accordance with the primary outcome. Furthermore, we did not ascertain any discernible correlation between the extent of anemia and significant major morbidity.
Conclusions
Compared with preoperative non-anemia, anemia status does not seem to be associated with major morbidity in patients with CRC surgery. It is noteworthy that, anemia is insufficient as a solitary risk factor and may be a better marker of poor health resulting from multiple factors.
Trial registration
Registration Authority: Chinese Clinical Trial Registry; Registration number and date: ChiCTR2100049696, 08/08/2021; Principal investigator: Ting Yan; Link to trial registry:
http://www.chictr.org.cn/showproj.aspx?proj=131698
; .
Journal Article
Long-Term Combined Organic and Inorganic Fertilization Alters Soil Phosphorus Fractions and Peanut Uptake
2025
Organic amendments, such as straw, biochar, and animal manure, have been demonstrated to enhance soil phosphorus (P) availability effectively; however, the long-term impacts and underlying mechanisms require further study. Based on a long-term field experiment, this research systematically analyzed the effects of biochar (BIO), biochar-based fertilizer (BF), straw-returning (CS), and pig manure compost (PMC) on soil phosphorus transformation and crop phosphorus uptake. Results showed that biochar significantly boosted soil available phosphorus (AP) by releasing soluble phosphorus, raising soil pH, reducing phosphorus fixation by iron and aluminum oxides, and enhancing soil cation exchange capacity (CEC) to promote phosphorus dissolution and transformation. Notably, biochar increased the proportion of NaOH-P, facilitating phosphorus accumulation in peanut grains and improving the phosphorus harvest index and utilization efficiency. Straw-returning primarily elevated soil AP by promoting organic phosphorus mineralization and inorganic phosphorus release; however, its acidification of the soil impaired phosphorus translocation to grains, resulting in lower phosphorus-use efficiency compared to biochar. Pig manure compost reduced soil phosphorus fixation and increased soil total organic carbon (TOC), thereby boosting phosphorus transformation. Despite enhancing phosphorus dry-matter production in plants, most phosphorus remained in stems and leaves, with limited translocation to grains, leading to lower phosphorus-use efficiency than biochar. In conclusion, biochar was most effective in enhancing soil phosphorus availability and crop phosphorus-use efficiency, highlighting its potential in sustainable soil fertility management and optimized crop production.
Journal Article
Application of the Cre/loxP Site-Specific Recombination System for Gene Transformation in Aurantiochytrium limacinum
by
Hou, Pan
,
Cao, Xiaofei
,
Zhang, Xuecheng
in
antibiotic resistance marker gene
,
Antibiotics
,
Aurantiochytrium limacinum
2015
The Cre/loxP site-specific recombination system was applied to Aurantiochytrium limacinum to obtain a transformant without the antibiotic resistance marker gene. First, the enhanced green fluorescent protein gene (egfp) and chloramphenicol resistance gene (Cmr), along with the two loxP loci, were integrated into the genome of A. limacinum OUC88 using 18S rDNA sequences as the homologous recombination sites. Then plasmid pSH65, containing a zeocin resistance gene (Bler) was transferred into A. limacinum OUC_CG. After induction with galactose, repeated passage in culture and PCR-based assessment, the pSH65 plasmid was lost and A. limacinum OUC_EG host was shown to no longer have resistance to 100 mg chloramphenicol/L or 5 mg zeocin/L. Through southern blotting and fluorescence detection, egfp was found to be integrated into the genome of A. limacinum OUC_EG, and EGFP was successfully expressed in the cells. The successful application of the Cre/loxP system demonstrates an experimental basis for genetic modification of A. limacinum so as to obtain transformed strains with no antibiotic resistance marker genes.
Journal Article
Performance of Linear and Nonlinear Two-Leaf Light Use Efficiency Models at Different Temporal Scales
2015
The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.
Journal Article
Demystifying Ethereum account diversity: observations, models and analysis
2022
Blockchain platform Ethereum has involved millions of accounts due to its strong potential for providing numerous services based on smart contracts. These massive accounts can be divided into diverse categories, such as miners, tokens, and exchanges, which is termed as account diversity in this paper. The benefit of investigating diversity are multi-fold, including understanding the Ethereum ecosystem deeper and opening the possibility of tracking certain abnormal activities. Unfortunately, the exploration of blockchain account diversity remains scarce. Even the most relevant studies, which focus on the deanonymization of the accounts on Bitcoin, can hardly be applied on Ethereum since their underlying protocols and user idioms are different. To this end, we present the first attempt to demystify the account diversity on Ethereum. The key observation is that different accounts exhibit diverse behavior patterns, leading us to propose the heuristics for classification as the premise. We then raise the coverage rate of classification by the statistical learning model Maximum Likelihood Estimation (MLE). We collect real-world data through extensive efforts to evaluate our proposed method and show its effectiveness. Furthermore, we make an in-depth analysis of the dynamic evolution of the Ethereum ecosystem and uncover the abnormal arbitrage actions. As for the former, we validate two sweeping statements reliably: (1) standalone miners are gradually replaced by the mining pools and cooperative miners; (2) transactions related to the mining pool and exchanges take up a large share of the total transactions. The latter analysis shows that there are a large number of arbitrage transactions transferring the coins from one exchange to another to make a price difference.
Journal Article
Ferroptosis is Involved in Hyperoxic Lung Injury in Neonatal Rats
2021
To evaluate whether ferroptosis is involved in hyperoxic acute lung injury (HALI) and its mechanisms through the HALI model.
HE staining was used to assess lung injury pathology after the establishment of neonatal rat HALI model. ELISA was used to detect ROS, GPX4, and GSH expression. Prussian blue staining and Western Blot were used to detect iron deposition and the expression of ferroptosis-related proteins, respectively.
The HALI group showed pathological changes with larger and fewer alveoli and thicker alveolar septa after HE staining. Prussian blue staining detected significant iron deposition in the lung tissue of the HALI group. GPX4, GSH, GSS, and SLC7A11 expressions were significantly decreased in the HALI group than in the normal control group. In contrast, ROS, TFRC, FHC, and FLC expressions showed opposite results (p<0.05).
Ferroptosis may be involved in the pathological process of hyperoxic lung injury in neonatal rats.
Journal Article
Scientific Foundations and Problem-driven Case Studies of Landscape Sustainability: Sustainability of Human-environment Systems Through the Lens of the Landscape
2020
The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging. As interests in LSS continue to grow rapidly, scholars are wondering what LSS is about and how LSS fits into sustainability science, while practitioners are asking how LSS actually contributes to sustainability in the real world. To help address these questions, this dissertation research aims to explore the currently underused problem-driven, diagnostic approach to enhancing landscape sustainability through an empirical example of urbanization-associated farmland loss (UAFL). Based mainly on multimethod analysis of bibliographic information, the dissertation explores conceptual issues such as how sustainability science differs from conventional sustainable development research, and how the past, present, and future research needs of LSS evolve. It also includes two empirical studies diagnosing the issue of urban expansion and the related food security concern in the context of China, and proposes a different problem framing for farmland preservation such that stakeholders can be more effectively mobilized. The most important findings are: (1) Sustainability science is not “old wine in a new bottle,” and in particular, is featured by its complex human-environment systems perspective and value-laden transdisciplinary perspective. (2) LSS has become a vibrant emerging field since 2004-2006 with over three-decade’s intellectual accumulation deeply rooted in landscape ecology, yet LSS has to further embrace the two featured perspectives of sustainability science and to conduct more problem-driven, diagnostic studies of concrete landscape-relevant sustainability concerns. (3) Farmland preservationists’ existing problem framing of UAFL is inappropriate for its invalid causal attribution (i.e., urban expansion is responsible for farmland loss; farmland loss is responsible for decreasing grain production; and decreasing grain production instead of increasing grain demand is responsible for grain self-insufficiency); the real problem with UAFL is social injustice due to collective action dilemma in preserving farmland for regional and global food sufficiency. The present research provides broad implications for landscape scientists, the sustainability research community, and UAFL stakeholders.
Dissertation
Aqueous Extract of Fructus Choerospondiatis Peel Suppresses Vascular Inflammation and Alleviates Atherosclerosis via AKT/c-FOS/IL-6 Axis
by
Tian, Xiao-Li
,
Liu, Jiankun
,
Qiu, Jiayu
in
Acids
,
Animals
,
Anti-Inflammatory Agents - pharmacology
2025
Background: Atherosclerosis is the pathological basis for lethal cardio-cerebral vascular diseases, such as coronary artery disease and stroke. Fructus Choerospondiatis (FC) has demonstrated cardiac protective effects in multiple ethnomedicine. Whether these protective effects are attributed to the prevention of vascular atherosclerosis, however, remains unknown. We aim to examine the anti-atherosclerotic effect of FC aqueous extract and elucidate the underlying mechanism. Methods: FC was separated into peel and pulp, and the aqueous extract was obtained separately by boiling in water to mimic decocting. Atherosclerosis model was established in ApoE−/− mice fed with a high-fat diet, and histological analysis were utilized to evaluate the development of atherosclerosis. Various inflammatory models were constructed in mice to evaluate the anti-inflammatory effect of FC extract systemically, including acute local inflammation induced by traumatic injury (ear/foot swelling), acute systemic inflammation triggered by pathogenic infection (LPS- and POLY (I:C)-induced), as well as chronic inflammatory conditions associated with oxidative stress (D-galactose-induced), metabolic disorder (db/db mice), and aging. LC-MS and network pharmacology identified bioactive components and targets. Western blotting, ELISA, qPCR, and immunofluorescence were utilized to analyze the key genes involved in the mechanisms. Results: FC peel extract reduced serum IL-6 level, atherosclerotic plaque area, and macrophage content in the plaque, while pulp extract showed no protective effects. Peel extract exhibits anti-inflammatory effects in all models. The integrative application of LC-MS and network pharmacology identified ellagic acid as the major bioactive component and AKT as its target protein. Mechanistically, FC peel extract inhibits AKT phosphorylation, suppresses c-FOS expression and nuclear translocation, reduces IL-6 transcription and inflammation, and thus alleviates atherosclerosis. Conclusions: FC peel aqueous extract exerts anti-atherosclerotic effect by inhibiting inflammation through AKT/c-FOS/IL-6 axis. This study provides novel insights into the protective effects against atherosclerosis of FC peel and highlights its potential application in the prevention and treatment of coronary artery diseases.
Journal Article