Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
130 result(s) for "Zhou, Guorui"
Sort by:
An Ultra-Sensitive Multi-Functional Optical Micro/Nanofiber Based on Stretchable Encapsulation
Stretchable optical fiber sensors (SOFSs), which are promising and ultra-sensitive next-generation sensors, have achieved prominent success in applications including health monitoring, robotics, and biological–electronic interfaces. Here, we report an ultra-sensitive multi-functional optical micro/nanofiber embedded with a flexible polydimethylsiloxane (PDMS) membrane, which is compatible with wearable optical sensors. Based on the effect of a strong evanescent field, the as-fabricated SOFS is highly sensitive to strain, achieving high sensitivity with a peak gauge factor of 450. In addition, considering the large negative thermo-optic coefficient of PDMS, temperature measurements in the range of 30 to 60 °C were realized, resulting in a 0.02 dBm/°C response. In addition, wide-range detection of humidity was demonstrated by a peak sensitivity of 0.5 dB/% RH, with less than 10% variation at each humidity stage. The robust sensing performance, together with the flexibility, enables the real-time monitoring of pulse, body temperature, and respiration. This as-fabricated SOFS provides significant potential for the practical application of wearable healthcare sensors.
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling the comprehensive and accurate analysis of biomolecular-level changes. The integration of multi-omics technologies can holistically reveal the molecular toxicity mechanisms of pollutants, representing a primary emphasis in current toxicological research. This paper introduces the fundamental concepts of genomics, transcriptomics, proteomics, and metabolomics, while reviewing recent advancements in integrated omics approaches within aquatic toxicology. Furthermore, it provides a reference framework for the implementation of multi-omics strategies in ecotoxicological investigations. While multi-omics integration enables the unprecedented reconstruction of pollutant-induced molecular cascades and earlier biomarker discovery (notably through microbiome–metabolome linkages), its full potential requires experimental designs, machine learning-enhanced data integration, and validation against traditional toxicological endpoints within environmentally relevant models.
A Novel Airborne Molecular Contaminants Sensor Based on Sagnac Microfiber Structure
The impact of airborne molecular contaminants (AMCs) on the lifetime of fused silica UV optics in high power lasers (HPLs) is a critical issue. In this work, we demonstrated the on-line monitoring method of AMCs concentration based on the Sagnac microfiber structure. In the experiment, a Sagnac microfiber loop with mesoporous silica coating was fabricated by the microheater brushing technique and dip coating. The physical absorption of AMCs in the mesoporous coating results in modification of the surrounding refractive index (RI). By monitoring the spectral shift in the wavelength domain, the proposed structure can operate as an AMCs concentration sensor. The sensitivity of the AMCs sensor can achieve 0.11 nm (mg/m3). By evaluating the gas discharge characteristic of four different low volatilization greases in a coarse vacuum environment, we demonstrated the feasibility of the proposed sensors. The use of these sensors was shown to be very promising for meeting the requirements of detecting trace amounts of contaminants.
Distribution Characteristics and Ecological Risk Assessment of Organophosphate Esters in Surface Soils of China
The chemical flame retardants represented by organophosphate esters (OPEs) are widely used and have a serious impact on the environment. In this study, we collected data on the exposure levels of ten OPEs in Chinese soils in recent years and performed an ecological risk assessment. The results showed that the levels of OPEs varied considerably throughout different regions of China, with high exposure levels in highly urbanized or industrialized areas such as Guangdong Province and Northeast China, where the mean value was >200 ng/g. The content of OPEs in the soil in industrial and commercial areas was significantly higher than in other regions, indicating that the concentration of OPEs in the soil is closely related to local economic development and the degree of industrialization. Meanwhile, the number of studies reporting on OPEs and their exposure concentrations have increased significantly since 2018. Through the ecological risk assessment, it was found that TCP, EHDPP and TEHP pose high ecological risks. Although some OPEs, such as TCIPP, have low ecological risk levels overall, their high exposure concentrations are still worthy of attention. This study details the general status of OPE contamination in Chinese soils, which can serve as a reference for ecological environmental supervision.
A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer
A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems.
Effects of anisotropy on single-crystal SiO2 in nano-metric cutting
The nano-metric cutting process of single-crystal SiO2 was studied using molecular dynamics simulation, where the effects of anisotropy on material removal and surface integrity were analyzed. The typical crystal directions on different crystal planes of SiO2 were selected as cutting directions. The results show that the chip formation, temperature distribution in the machined area, cutting force, phase transformation and damage layer thickness vary according to the cutting direction. The crystal orientation of (110) [00−1] exhibits a large range of damage expansion while (110) [1−10] exhibits the smallest range. In addition, the radial distribution function results show that SiO2 workpieces cut in different directions vary in crystal phase type and content to some degree, while a new phase is produced in the cutting direction of (111) [−101]. Therefore, the anisotropy of the selection of crystal planes and crystal directions is of great significance for the nano-metric cutting of SiO2 to obtain quality machined surfaces of SiO2.
A Low-Cost High-Temperature Sensor Based on Long-Period Fiber/Microfiber Gratings by Local Fictive Temperature Modification
A high temperature-sensitive long-period fiber grating (LPFG) sensor fabricated by the local fictive temperature modification is proposed and demonstrated. High-frequency CO2 laser pulses scan standard single-mode fiber (SMF), and the modification zones extended to the core of SMF. Experimental results demonstrate that the LPFG temperature sensors with 600 μm grating period and 32 period numbers offer the average sensitivity of 0.084 nm/C in the temperature range of room temperature (RM) to 875°C. The LPFGs fabricated here show exponential change in terms of the spectral wavelength shift versus changes in temperature. In addition, the maximum temperature sensitivity of 0.37 nm/C is achieved by employing long-period microfiber grating (LPMFG), fabricated by the microheater brushing technique and the local fictive temperature modification. LPMFG sensor exhibits better temperature characteristics due to a thinner diameter.
Micro/Nanofiber with Hollow Silica Nanoparticles Thin-Film for Airborne Molecular Contaminants Real-Time Sensing
A novel chemical sensing approach detecting airborne molecular contaminants (AMCs) or compounds is demonstrated by using single-mode optical microfibre (OMF) coated with hollow silica nanoparticles (HSNs). The concentration of AMCs, which were volatilized on the surface of the tapered microfibre coated with HSNs, influences the transmission loss of the microfibre. Tapered OMF was fabricated using a high-precision electrically controlled setup, and coatings of HSNs were prepared by meniscus coating method. The transmission loss of three OMFs with different diameters and the same thick coating were tested to determine the relationship between AMC concentrations and transmission loss of coated OMFs. Experimental results showed that the transmission loss increases with increasing concentration of AMCs. The sensitivity for volatile simethicone was 0.0263 dB/mg/m3 obtained by the coated OMF with diameter of 2.5 μm, and the sensitivity values of coated OMF with diameters of 5 μm and 6 μm were 0.0024 and 0.0018 dB/mg/m3, respectively. Thus the proposed coated OMF can be used in enclosed space for AMCs sensing.
The Characterization of Laser-Induced Particles Generated from Aluminum Alloy in High Power Laser Facility
Aerosol particle contamination in high-power laser facilities has become a major cause of internal optical component damage resistance and service life reduction. In general, contaminating particles primarily originate from stray light; therefore, it is crucial to investigate the mechanism and dynamics of the dynamic contaminating particle generation to control the cleanliness level. In this study, corresponding research was conducted on experiments and theory. We investigated the particle generation and surface composition modification under the action of a laser. We employed various surface analytical methods to identify the possible variations in the aluminum alloy surface during laser irradiations. A theoretical model for particle ejection from aluminum alloy surfaces was established by taking the adhesion force and laser cleaning force (due to thermal expansion) into account. The results show that the threshold energies for contamination particle generation and damage are around 0.1 and 0.2 J/cm2, respectively. Subsurface impurities are the primary source of particles, and particle adhesion density is related to surface roughness. Pollution particle generation and splashing processes include temperature increases, phase changes, impact diffusion, and adhesion. The results provide a reference for the normal operation of high-energy laser systems. The results also suggest that the laser irradiation pretreatment of aluminum alloy surfaces is essential to improve the cleanliness level.
A Contamination Sensor Based on an Array of Microfibers with Nanoscale-Structured Film
A contamination sensor based on an array of microfibers with nanoscale-structured film using evanescent field is proposed and demonstrated theoretically and experimentally. When the molecular contaminants deposit on the nanoscale-structured film, the refractive index of the film will change and the additional loss will be produced due to the disturbance of evanescent field. The possibility of the sensor is demonstrated theoretically by using three-dimensional finite-difference time domain (3D-FDTD). The corresponding experiments have also been carried out in order to demonstrate the theoretical results. Microfibers are fabricated by using hydrogen-oxygen flame-heated scanning fiber drawing method and the nanoscale-structured film coated on the surface of microfibers is deposited by using dip coating process. Then an array of microfibers is assembled to demonstrate the feasibility of the device. The experimental results show that contaminants detection with the device can agree well with the results measured by the laser-scattering particle counter, which demonstrates the feasibility of the new type of contaminant sensor. The device can be used to monitor contaminants on-line in the high-power laser system.