Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,378 result(s) for "Zhou, Liming"
Sort by:
Evaporative water loss of 1.42 million global lakes
The evaporative loss from global lakes (natural and artificial) is a critical component of the terrestrial water and energy balance. However, the evaporation volume of these water bodies—from the spatial distribution to the long-term trend—is as of yet unknown. Here, using satellite observations and modeling tools, we quantified the evaporation volume from 1.42 million global lakes from 1985 to 2018. We find that the long-term average lake evaporation is 1500 ± 150 km 3 year −1 and it has increased at a rate of 3.12 km 3 year −1 . The trend attributions include an increasing evaporation rate (58%), decreasing lake ice coverage (23%), and increasing lake surface area (19%). While only accounting for 5% of the global lake storage capacity, artificial lakes (i.e., reservoirs) contribute 16% to the evaporation volume. Our results underline the importance of using evaporation volume, rather than evaporation rate, as the primary index for assessing climatic impacts on lake systems. While the evaporative water loss from global lakes is invisible, the volume is substantial. In recent decades, lake evaporation volume has been significantly increasing due to enhanced evaporation rate, melting lake ice, and expansion of water extent.
Oral Submucous Fibrosis: Etiological Mechanism, Malignant Transformation, Therapeutic Approaches and Targets
Oral submucosal fibrosis (OSF) is a chronic, progressive and potentially malignant oral disorder with a high regional incidence and malignant rate. With the development of the disease, the normal oral function and social life of patients are seriously affected. This review mainly introduces the various pathogenic factors and mechanisms of OSF, the mechanism of malignant transformation into oral squamous cell carcinoma (OSCC), and the existing treatment methods and new therapeutic targets and drugs. This paper summarizes the key molecules in the pathogenic and malignant mechanism of OSF, the miRNAs and lncRNAs with abnormal changes, and the natural compounds with therapeutic effects, which provides new molecular targets and further research directions for the prevention and treatment of OSF.
The Mechanisms and therapeutic effects of granulocyte colony-stimulating factor in reproduction
Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that is primarily secreted by monocytes or macrophages and has traditionally been recognized for its role in stimulating the proliferation and differentiation of neutrophils. Recent research has revealed the presence of G-CSF in non-hematopoietic cells such as vascular endothelial cells, placental cells, and trophoblast cells. This discovery has led to the belief that G-CSF plays a significant role in ensuring the success of pregnancy. In this review, we investigate and summarize the mechanisms of G-CSF in the reproductive system, specifically addressing its roles in endometrial repair at the maternal-fetal interface, trophoblast development, suppression of autoimmunity, ovulation, and its therapeutic effects in reproductive-related diseases. As an important cytokine in normal pregnancy, our study demonstrate that G-CSF could improve endometrial receptivity through multiple mechanisms: not only by inhibiting apoptosis, regulating cytokine expression, and mobilizing cells, but also by increasing the number of endometrial pinopodes and attenuating degeneration, as supported by recent studies. Our aim is to provide a comprehensive reference for future scientific research and clinical treatment endeavors.
Observed changes in fire patterns and possible drivers over Central Africa
Fire is an integral part of Earth's system that links regional and global biogeochemical cycles, human activities, and ecosystems. Global estimates for biomass burning indicate that Africa is responsible for ~70% of global burned area and ~50% of fire-related carbon emissions. Previous studies have documented an overall decline in burned area in the African continent, but changes in fire patterns, such as the frequency and size of different fire categories, have not been assessed. In this study, long-term fire trends were investigated using the latest burned area data from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Global Fire Emission Database (GFED4s) over Central Africa (10°E-40°E, 15°N-15°S). A 3D (latitude, longitude, time) connected-component labeling algorithm was applied to identify individual fires and their sizes. The results show a decline in burned area by 2.7-3.2 Mha yr−1 (~1.3% yr−1) for the period 2003-2017, particularly in northern Central Africa. This decline was attributed to significant decreases in both fire frequency and size, particularly for large fires (>100 ha) which contribute to ~90% of the total burned area. Burned area declined in tropical savannas and grasslands but increased at the edges of the Congolese rainforest. A random forest regression model was applied to quantify the influences of climatic conditions, fuel availability, and agricultural activity on burned area changes. Overall, suppressed fuel, increased dry season length, and decreased rainfall contributed to significant declines in burned area in savannas and grasslands. At the edges of the southern Congolese rainforest, suppressed rainfall and warmer temperature were responsible for the increased burned area.
Track Deflection Monitoring for Railway Construction Based on Dynamic Brillouin Optical Time-Domain Reflectometry
Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation. Dy-BOTDR can provide a two-dimensional spatial–temporal distribution map of track strain changes to characterize various events for better monitoring accuracy and lower false alarm rates.
Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa
Understanding the rainfall climatology and variability over Central Equatorial Africa (CEA) has largely been hampered by the lack of adequate in situ observations and meteorological stations for the last three decades. Large differences and uncertainties among several observational and reanalysis data sets and various climate model simulations present another big challenge. This study comprehensively assesses the currently widely used reanalysis products based on quality-controlled radiosonde observations and a new gauge-based rainfall data set, NIC131, in order to identify the “best” reanalysis products available over CEA. Among the seven reanalysis data sets (i.e., 20CR, CFSR, ERA-Interim, JRA-55, MERRA2, NCEP-1 and NCEP-2), MERRA2 is closest to NIC131 in reproducing the mean climatology and interannual variability and has the smallest biases and root-mean-square error (RMSE) in describing the observed wind fields in the lower- and middle-troposphere, and the two NCEP reanalyses can better capture geopotential height fields than the other reanalyses. Overall, the reanalyses capture the major features of the rainfall seasonal cycle and the seasonal evolution in the reference data but demonstrate an evident spread of spatiotemporal characteristics. By examining the moisture transport, we find that the differences in the lower- and middle-tropospheric circulation can reasonably explain the differences in the rainfall climatology among the reanalyses. Considering the large differences in horizontal and vertical wind fields among the seven reanalyses, we need to use the best reanalysis wind and moisture fields to explain the observed rainfall and associated circulation changes over CEA.
Evaporative cooling over the Tibetan Plateau induced by vegetation growth
Understanding land-surface biophysical feedbacks to the atmosphere is needed if we are to simulate regional climate accurately. In the Arctic, previous studies have shown that enhanced vegetation growth decreases albedo and amplifies warming. In contrast, on the Tibetan Plateau, a statistical model based on in situ observations and decomposition of the surface energy budget suggests that increased vegetation activity may attenuate daytime warming by enhancing evapotranspiration (ET), a cooling process. A regional climate model also simulates daytime cooling when prescribed with increased vegetation activity, but with a magnitude smaller than observed, likely because this model simulates weaker ET enhancement in response to increased vegetation growth. In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
Afforestation in China cools local land surface temperature
China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects.
A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules
Besides genome editing, CRISPR-Cas12a has recently been used for DNA detection applications with attomolar sensitivity but, to our knowledge, it has not been used for the detection of small molecules. Bacterial allosteric transcription factors (aTFs) have evolved to sense and respond sensitively to a variety of small molecules to benefit bacterial survival. By combining the single-stranded DNA cleavage ability of CRISPR-Cas12a and the competitive binding activities of aTFs for small molecules and double-stranded DNA, here we develop a simple, supersensitive, fast and high-throughput platform for the detection of small molecules, designated CaT-SMelor ( C RISPR-Cas12a- and aT F-mediated s mall m ol e cu l e detect or ). CaT-SMelor is successfully evaluated by detecting nanomolar levels of various small molecules, including uric acid and p -hydroxybenzoic acid among their structurally similar analogues. We also demonstrate that our CaT-SMelor directly measured the uric acid concentration in clinical human blood samples, indicating a great potential of CaT-SMelor in the detection of small molecules. Bacterial allosteric transcription factors can sense and respond to a variety of small molecules. Here the authors present CaT-SMelor which uses Cas12a and allosteric transcription factors to detect small molecules in the nanomolar range.
A flexible organic mechanoluminophore device
A flexible mechanoluminophore device that is capable of converting mechanical energy into visualizable patterns through light-emission holds great promise in many applications, such as human-machine interfaces, Internet of Things, wearables, etc. However, the development has been very nascent, and more importantly, existing mechanoluminophore materials or devices emit light that cannot be discernible under ambient light, in particular with slight applied force or deformation. Here we report the development of a low-cost flexible organic mechanoluminophore device, which is constructed based on the multi-layered integration of a high-efficiency, high-contrast top-emitting organic light-emitting device and a piezoelectric generator on a thin polymer substrate. The device is rationalized based on a high-performance top-emitting organic light-emitting device design and maximized piezoelectric generator output through a bending stress optimization and have demonstrated that it is discernible under an ambient illumination as high as 3000 lux. A flexible multifunctional anti-counterfeiting device is further developed by integrating patterned electro-responsive and photo-responsive organic emitters onto the flexible organic mechanoluminophore device, capable of converting mechanical, electrical, and/or optical inputs into light emission and patterned displays. It has been challenging to achieve discernible mechanoluminophore devices under ambient light. Here, authors integrate top-emitting organic light-emitting device and piezoelectric generator on thin polymer substrate for the realization of flexible devices under an ambient illuminance of 3000 lux.