Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
424 result(s) for "Zhou, Xiaohu"
Sort by:
Spatiotemporal Evolution Characteristics of Hanyuan Landslide in Sichuan Province, China, on 21 August 2020
Synthetic aperture radar interferometry (InSAR) has the advantages of a wide monitoring range, high density, high accuracy, and is not limited by weather conditions, providing a new technical means for landslide research. On 21 August 2021, a landslide occurred in Zhonghai Village, Hanyuan County, Ya’an City, Sichuan Province, China, resulting in nine deaths. For the research area, the Small Baseline Subsets InSAR (SBAS-InSAR) technique was used to extract the spatiotemporal evolution characteristics before the landslide occurred (from 16 January 2019 to 22 May 2020), and the height difference before and after the landslide occurrence was extracted using unmanned aerial vehicle photogrammetry, high-resolution remote sensing images, and digital elevation model data. By analyzing seismic activity, human activities, and rainfall in the study area, the main causes of landslides were discussed. This study not only reduces the losses caused by landslide disasters but also provides a scientific basis and technical support for local governments’ disaster prevention and mitigation work.
Depiction of the genomic and genetic landscape identifies CCL5 as a protective factor in colorectal neuroendocrine carcinoma
Background Colorectal neuroendocrine carcinomas (CRNECs) are highly aggressive tumours with poor prognosis and low incidence. To date, the genomic landscape and molecular pathway alterations have not been elucidated. Methods Tissue sections and clinical information of CRNEC ( n  = 35) and CR neuroendocrine tumours (CRNETs) ( n  = 25) were collected as an in-house cohort (2010–2020). Comprehensive genomic and expression panels (AmoyDx® Master Panel) were applied to identify the genomic and genetic alterations of CRNEC. Through the depiction of the genomic landscape and transcriptome profile, we compared the difference between CRNEC and CRNET. Reverse transcription-polymerase chain reaction and immunofluorescence staining were performed to confirm the genetic alterations. Results High tumour mutation load was observed in CRNEC compared with CRNET. CRNECs showed a “cold” immune landscape and increased endothelial cell activity compared with NETs. Importantly, PAX5 was aberrantly expressed in CRNEC and predicted a poor prognosis of CRNECs. CCL5, a factor that is considered an immunosuppressive factor in several tumour types, was strongly expressed in CRNEC patients with long-term survival and correlated with high CD8 + T cell infiltration. Conclusion Through the depiction of the genomic landscape and transcriptome profile, we demonstrated alterations in molecular pathways and potential targets for immunotherapy in CRNEC.
The Performance of Enhanced Liver Fibrosis (ELF) Test for the Staging of Liver Fibrosis: A Meta-Analysis
The enhanced liver fibrosis test (ELF) has been shown to accurately predict significant liver fibrosis in several liver diseases. To perform a meta-analysis to assess the performance of the ELF test for the assessment of liver fibrosis. Electronic and manual searches were performed to identify studies of the ELF test. After methodological quality assessment and data extraction, pooled estimates of the sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and summary receiver operating characteristics (sROC) were assessed systematically. The extent of heterogeneity and reasons for it were assessed. Nine studies were identified for analysis. The pooled sensitivity, specificity, positive LR, negative LR, and DOR values of ELF test, for assessment of significant liver fibrosis, were 83% (95% CI=0.80-0.86), 73% (95% CI=0.69-0.77), 4.00 (95% CI=2.50-6.39), 0.24 (95% CI=0.17-0.34), and 16.10 (95% CI=8.27-31.34), respectively; and, for evaluation of severe liver fibrosis, were 78% (95% CI=0.74-0.81), 76% (95% CI=0.73-0.78), 4.39 (95% CI=2.76-6.97), 0.27 (95% CI=0.16-0.46), and 16.01 (95% CI: 7.15-35.82), respectively; and, for estimation of cirrhosis, were 80% (95% CI=0.75-0.85), 71% (95% CI=0.68-0.74), 3.13 (95% CI=2.01-4.87), 0.29 (95% CI=0.19-0.44), and 14.09 (95% CI: 5.43-36.59), respectively. The ELF test shows good performance and considerable diagnostic value for the prediction of histological fibrosis stage.
MicroRNA‐761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin‐2
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the third leading cause of cancer‐related deaths worldwide. The fate of a cell is determined by the balance between the processes of fission and fusion that constantly occur in the mitochondria of cells. We previously showed that overexpression of Mitofusin‐2 can induce apoptosis in HCC cells by triggering an influx of Ca2+ into the mitochondria from the ER. The function of Mitofusin‐2 has been studied extensively, but the mechanism underlying the post‐transcriptional regulation of Mitofusin‐2 has not been elucidated. In the present study, we aimed to identify the mechanism of Mitofusin‐2 regulation in HCC. We demonstrated that Mitofusin‐2 is a direct target of miR‐761, which was found to be upregulated in HCC tissues. Furthermore, a miR‐761 inhibitor impaired mitochondrial function by upregulating Mitofusin‐2 and effectively repressed tumor growth and metastasis both in vivo and in vitro. Our findings provide new insight into the mechanism underlying Mitofusin‐2 regulation and the potential role of miR‐761 in HCC, making it a potential candidate for use in HCC therapy in the future. Mitofusin‐2 was found to be a direct target of miR‐761, which was found to be upregulated in HCC tissues. MiR‐761 can affect mitochondrial function and inhibit cell proliferation, migration, and invasion in vivo and in vitro by targeting Mfn2.
Conformer-specific Infrared spectroscopy of cationic Criegee intermediates syn- and anti-CH3CHOO
Criegee intermediates are pivotal in atmospheric chemistry, yet their cationic forms remain poorly understood. This study presents the infrared spectra of cationic Criegee intermediates, specifically syn - and anti -CH 3 CHOO + , using vacuum ultraviolet photoionization coupled with IR photon dissociation spectroscopy. Combined with quantum chemistry calculations, we explore conformer-specific infrared spectra and identify distinct unimolecular reaction pathways for each conformer. Our method reveals structural differences between neutral and cationic CH 3 CHOO, including a lower isomerization barrier in the cationic form. This approach enables the investigation of conformer-specific IR spectroscopy for cationic species, which is challenging using direct IR absorption methods. By exploiting these distinct reaction pathways, we can conduct conformer-specific spectroscopic studies, advancing our ability to trace specific molecular conformations in complex chemical processes in both atmospheric and interstellar contexts. Criegee intermediates are pivotal in atmospheric chemistry, yet their cationic forms remain poorly understood. Here, the authors present infrared spectra of cationic Criegee intermediates, specifically syn - and anti -CH 3 CHOO + , using vacuum ultraviolet photoionization coupled with IR photon dissociation spectroscopy.
Advances in Single-Cell Printing
Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.
Overexpression of circular RNA hsa_circ_0008621 facilitates colorectal cancer progression and predicts poor prognosis
Aim To evaluate the potential role of serum and tissue hsa_circ_0008621 as a prognostic biomarker for CRC patients. Focused on the functional role of hsa_circ_0008621 in colorectal cancer (CRC). Methods Serum and tissue hsa_circ_0008621 expression were quantified by qRT‐PCR in 157 CRC patients, as well as 100 serums from healthy controls. Serum and tissue hsa_circ_0008621 expression was evaluated for their prognostic role in CRC patients using Kaplan–Meier curves and Multivariate Cox proportional hazards analysis. To further characterize the biological role of hsa_circ_0008621 expression in CRC, in vitro hsa_circ_0008621 inhibition was performed and the effects on cellular growth, migration, invasion, apoptosis, and glycolysis were explored. Next, the downstream molecules for hsa_circ_0008621 were predicted. Results Hsa_circ_0008621 expression was significantly upregulated in CRC tissues and serums. Serum hsa_circ_0008621 levels were significantly up‐regulated in advanced‐staged samples. High serum hsa_circ_0008621 expression was associated with shorter overall survival and recurrence‐free survival in CRC patients. Multivariate Cox regression analysis identified a high level of serum hsa_circ_0008621 expression as an independent prognostic factor with respect to overall survival and recurrence‐free survival. Loss of function assays for hsa_circ_0008621 in vitro led to a significant decrease in cell proliferation, migration, invasion, and glycolysis, but an increase in cell apoptosis. Hsa_circ_0008621 can sponge miR‐532‐5p, which targets SLC16A3. Conclusion High level of serum hsa_circ_0008621 is associated with poor survival in CRC and promotes CRC progression, suggesting it to be a promising non‐invasive prognostic biomarker and novel therapeutic target in CRC patients. Hsa_circ_0008621 was related to the CRC prognosis. MiR‐532‐3p was a target for hsa_circ_0008621.
PINC: A Tool for Non-Coding RNA Identification in Plants Based on an Automated Machine Learning Framework
There is evidence that non-coding RNAs play significant roles in the regulation of nutrient homeostasis, development, and stress responses in plants. Accurate identification of ncRNAs is the first step in determining their function. While a number of machine learning tools have been developed for ncRNA identification, no dedicated tool has been developed for ncRNA identification in plants. Here, an automated machine learning tool, PINC is presented to identify ncRNAs in plants using RNA sequences. First, we extracted 91 features from the sequence. Second, we combined the F-test and variance threshold for feature selection to find 10 features. The AutoGluon framework was used to train models for robust identification of non-coding RNAs from datasets constructed for four plant species. Last, these processes were combined into a tool, called PINC, for the identification of plant ncRNAs, which was validated on nine independent test sets, and the accuracy of PINC ranged from 92.74% to 96.42%. As compared with CPC2, CPAT, CPPred, and CNIT, PINC outperformed the other tools in at least five of the eight evaluation indicators. PINC is expected to contribute to identifying and annotating novel ncRNAs in plants.
A Meta-Analysis of Randomized Controlled Trials of Low-Volume Polyethylene Glycol plus Ascorbic Acid versus Standard-Volume Polyethylene Glycol Solution as Bowel Preparations for Colonoscopy
Standard-volume polyethylene glycol (PEG) gut lavage solutions are safe and effective, but they require the consumption of large volumes of fluid. A new lower-volume solution of PEG plus ascorbic acid has been used recently as a preparation for colonoscopy. A meta-analysis was performed to compare the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. Electronic and manual searches were performed to identify randomized controlled trials (RCTs) that compared the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. After a methodological quality assessment and data extraction, the pooled estimates of bowel preparation efficacy during bowel cleansing, compliance with preparation, willingness to repeat the same preparation, and the side effects were calculated. We calculated pooled estimates of odds ratios (OR) by fixed- and/or random-effects models. We also assessed heterogeneity among studies and the publication bias. Eleven RCTs were identified for analysis. The pooled OR for preparation efficacy during bowel cleansing and for compliance with preparation for low-volume PEG plus ascorbic acid were 1.08 (95% CI = 0.98-1.28, P = 0.34) and 2.23 (95% CI = 1.67-2.98, P<0.00001), respectively, compared with those for standard-volume PEG. The side effects of vomiting and nausea for low-volume PEG plus ascorbic acid were reduced relative to standard-volume PEG. There was no significant publication bias, according to a funnel plot. Low-volume PEG plus ascorbic acid gut lavage achieved non-inferior efficacy for bowel cleansing, is more acceptable to patients, and has fewer side effects than standard-volume PEG as a bowel preparation method for colonoscopy.
Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.