Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
166 result(s) for "Zhu, Xiangqian"
Sort by:
Single-cell resolution analysis reveals the preparation for reprogramming the fate of stem cell niche in cotton lateral meristem
Background Somatic embryogenesis is a major process for plant regeneration. However, cell communication and the gene regulatory network responsible for cell reprogramming during somatic embryogenesis are still largely unclear. Recent advances in single-cell technologies enable us to explore the mechanism of plant regeneration at single-cell resolution. Results We generate a high-resolution single-cell transcriptomic landscape of hypocotyl tissue from the highly regenerable cotton genotype Jin668 and the recalcitrant TM-1. We identify nine putative cell clusters and 23 cluster-specific marker genes for both cultivars. We find that the primary vascular cell is the major cell type that undergoes cell fate transition in response to external stimulation. Further developmental trajectory and gene regulatory network analysis of these cell clusters reveals that a total of 41 hormone response-related genes, including LAX2 , LAX1 , and LOX3 , exhibit different expression patterns in the primary xylem and cambium region of Jin668 and TM-1. We also identify novel genes, including CSEF , PIS1 , AFB2 , ATHB2 , PLC2 , and PLT3 , that are involved in regeneration. We demonstrate that LAX2 , LAX1 and LOX3 play important roles in callus proliferation and plant regeneration by CRISPR/Cas9 editing and overexpression assay. Conclusions This study provides novel insights on the role of the regulatory network in cell fate transition and reprogramming during plant regeneration driven by somatic embryogenesis.
The relationship of exercise and cancer-related fatigue in patients with advanced liver cancer: a cross-sectional study
There is increasing interest in understanding exercise as a potential treatment for cancer-related fatigue (CRF); however, rarely research has been conducted on more aggressive cancers with short survival, such as liver cancer. The purpose of this study was to provide educational ideas for insufficient exercise and provide clues for the design of effective and safe exercise intervention programs with high compliance in patients of advanced liver cancer in the future. Participants were recruited from a tertiary cancer hospital using convenience sampling. All participants were asked to complete self-report questionnaires that assessed their medical and demographic variables, exercise habits and CRF during their hospitalization in the interventional department. Spearman’s correlation analysis and Nonparametric test was used to explore correlations between exercise subgroups and CRF. The Baron and Kenny’s Approach was used to investigate the mediating effect of exercise index between P-EX and CRF. 207 out of 255 participants were enrolled in this study, with an average age of 55.4 years. The CRF score was 33 (28, 36), and 93.2% had insufficient exercise. Exercise frequency (≥ 3 Times/week) (Z = 4.34, p = 0.037) and maintaining exercise trend (Z = 15.85, p = 0.001) had a positive effect on CRF. P-EX had a great impact on exercise index and affecting CRF directly. Participants in the study showed serious fatigue and insufficient exercise. Exercise education can be initiated earlier, particularly those without regular exercise experience. Sustained light exercise, compliant with exercise habits and interests, three times a week may be a practical way to reduce the risk of CRF in advanced liver cancer.
Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum)
Background Base editors (BEs) display diverse applications in a variety of plant species such as Arabidopsis, rice, wheat, maize, soybean, and cotton, where they have been used to mediate precise base pair conversions without the collateral generation of undesirable double-stranded breaks (DSB). Studies of single-nucleotide polymorphisms (SNPs) underpinning plant traits are still challenging, particularly in polyploidy species where such SNPs are present in multiple copies, and simultaneous modification of all alleles would be required for functional analysis. Allotetraploid cotton has a number of homoeologous gene pairs located in the A and D sub-genomes with considerable SNPs, and it is desirable to develop adenine base editors (ABEs) for efficient and precise A-to-G single-base editing without DSB in such complex genome. Results We established various ABE vectors based on different engineered adenosine deaminase (TadA) proteins fused to Cas9 variants (dCas9, nCas9), enabling efficient A to G editing up to 64% efficiency on-target sites of the allotetraploid cotton genome. Comprehensive analysis showed that GhABE7.10n exhibited the highest editing efficiency, with the main editing sites specifically located at the position A5 (counting the PAM as positions 21–23). Furthermore, DNA and RNA off-target analysis of cotton plants edited with GhABE7.10n and GhABE7.10d by whole genome and whole-transcriptome sequencing revealed no DNA off-target mutations, while very low-level RNA off-target mutations were detected. A new base editor, namely GhABE7.10dCpf1 (7.10TadA + dCpf1), that recognizes a T-rich PAM, was developed for the first time. Targeted A-to-G substitutions generated a single amino acid change in the cotton phosphatidyl ethanolamine-binding protein ( GhPEBP ), leading to a compact cotton plant architecture, an ideotype for mechanized harvesting of modern cotton production. Conclusions Our data illustrate the robustness of adenine base editing in plant species with complex genomes, which provides efficient and precise toolkit for cotton functional genomics and precise molecular breeding.
Construction of Host Plant Insect‐Resistance Mutant Library by High‐Throughput CRISPR/Cas9 System and Identification of A Broad‐Spectrum Insect Resistance Gene
Insects pose significant challenges in cotton‐producing regions. Here, they describe a high‐throughput CRISPR/Cas9‐mediated large‐scale mutagenesis library targeting endogenous insect‐resistance‐related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance‐related mutants (10% of 200 lines) their identified that may contribute to cotton‐insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex‐like protein 423 (GhMLP423) for in‐depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis‐related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein‐protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large‐scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance. A high‐throughput screening strategy for cotton endogenous insect‐resistance‐related genes is established by a CRISPR/Cas9‐mediated large‐scale mutant library. It identifies promising genes related to plant innate insect‐resistance, including major latex‐like protein 423 (GhMLP423). GhMLP423 enhanced plant immunity to chewing and sap‐sacking insects via the induction of GhEPS15 that initiates the systemic acquired resistance elicited by the systemically propagating waves of Ca2+‐mediated ROS signaling.
CRISPR/dCas13(Rx) Derived RNA N6‐methyladenosine (m6A) Dynamic Modification in Plant
N6‐methyladenosine (m6A) is the most prevalent internal modification of mRNA and plays an important role in regulating plant growth. However, there is still a lack of effective tools to precisely modify m6A sites of individual transcripts in plants. Here, programmable m6A editing tools are developed by combining CRISPR/dCas13(Rx) with the methyltransferase GhMTA (Targeted RNA Methylation Editor, TME) or the demethyltransferase GhALKBH10 (Targeted RNA Demethylation Editor, TDE). These editors enable efficient deposition or removal of m6A modifications at targeted sites of endo‐transcripts GhECA1 and GhDi19 within a broad editing window ranging from 0 to 46 nt. TDE editor significantly decreases m6A levels by 24%–76%, while the TME editor increases m6A enrichment, ranging from 1.37‐ to 2.51‐fold. Furthermore, installation and removal of m6A modifications play opposing roles in regulating GhECA1 and GhDi19 mRNA transcripts, which may be attributed to the fact that their m6A sites are located in different regions of the genes. Most importantly, targeting the GhDi19 transcript with TME editor plants results in a significant increase in root length and enhanced drought resistance. Collectively, these m6A editors can be applied to study the function of specific m6A modifications and have the potential for future applications in crop improvement. TDE and TME editors can efficiently deposit and remove the m6A modification at targeted sites, thereby altering mRNA abundance and potentially influencing downstream phenotypes in individual transcripts. These m6A editors operate across a broad editing window and exhibit high specificity for off‐target effects, which is essential for investigating the roles of specific m6A modifications in plants.
A Hybrid Approach for Power System Security Enhancement via Optimal Installation of Flexible AC Transmission System (FACTS) Devices
Increasing demand for electricity has placed heavy stress on power system security. Therefore, this paper focuses on the problem of how to maximize power system static security in terms of branch loading and voltage level under normal operation and even the most critical single line contingency conditions. This paper proposes a hybrid approach to find out the optimal locations and settings of two classical types of flexible AC transmission system (FACTS) devices, namely thyristor-controlled series compensators (TCSCs) and static var compensators (SVCs) for solving this problem. Our proposed approach requires a two-step strategy. Firstly, the min cut algorithm (MCA) and tangent vector technique (TVT) are applied to determine the proper candidate locations of TCSC and SVC respectively so as to reduce the search scope for a solution to the problem, and then the cuckoo search algorithm (CSA) is employed to solve this problem by simultaneously optimizing the locations and settings for TCSC and SVC installation. The proposed hybrid approach has been verified on the IEEE 6-bus and modified IEEE 14-bus test systems. The results indicate that CSA outperforms particle swarm optimization (PSO), proving its effectiveness and potential, and they also show that our proposed hybrid approach can find the best locations and settings for TCSC and SVC devices as an effective way for enhancing power system static security by removing or alleviating the overloads and voltage violations under normal operation and even the most critical single line contingency conditions. Using this hybrid approach, the search space for solution to the problem becomes limited hence the computational burden will be decreased.
Lightweight Design of an Electric Tricycle Frame Considering Dynamic Stress in Driving Conditions
Since most tricycles are driven on rough roads, a static analysis of the frame with a constant load and a specific boundary condition is insufficient to assess whether the lightweight design satisfies the strength requirements. A flexible multibody dynamics approach is used to assess the dynamic stress of a tricycle frame in five driving conditions to determine the positions where material can be removed. The five driving conditions, including high-speed driving, turning, climbing, braking and driving on a bumpy road, are established according to two national standards. An electric tricycle prototype is modeled using the rigid-flexible coupling method, and experiments are conducted to adjust the center of mass and stiffness of the suspension. The frame stress results obtained from the simulation are in good agreement with the loading test results. Subsequently, the dynamic stress of the frame is analyzed, and a steel plate with a suitable thickness is selected according to the stress distribution and the allowable stress. The modified frame is about 19.1 % lighter, and the maximum stress is only 2.8 % larger than that of the prototype. The results demonstrate that the proposed method is suitable for the lightweight design of one component in a system operating under various working conditions.
Structure/Aerodynamic Nonlinear Dynamic Simulation Analysis of Long, Flexible Blade of Wind Turbine
To meet the requirements of geometric nonlinear modeling and bending–torsion coupling analysis of long, flexible offshore blades, this paper develops a high-precision engineering simplified model based on the Absolute Nodal Coordinate Formulation (ANCF). The model considers nonlinear variations in linear density, stiffness, and aerodynamic center along the blade span and enables efficient computation of 3D nonlinear deformation using 1D beam elements. Material and structural function equations are established based on actual 2D airfoil sections, and the chord vector is obtained from leading and trailing edge coordinates to calculate the angle of attack and aerodynamic loads. Torsional stiffness data defined at the shear center is corrected to the mass center using the axis shift theorem, ensuring a unified principal axis model. The proposed model is employed to simulate the dynamic behavior of wind turbine blades under both shutdown and operating conditions, and the results are compared to those obtained from the commercial software Bladed. Under shutdown conditions, the blade tip deformation error in the y-direction remains within 5% when subjected only to gravity, and within 8% when wind loads are applied perpendicular to the rotor plane. Under operating conditions, although simplified aerodynamic calculations, structural nonlinearity, and material property deviations introduce greater discrepancies, the x-direction deformation error remains within 15% across different wind speeds. These results confirm that the model maintains reasonable accuracy in capturing blade deformation characteristics and can provide useful support for early-stage dynamic analysis.
A high-precision positioning method for deep-towed multichannel seismic arrays
Kuiyang-ST2000 is a deep-towed multichannel seismic system that provides high-resolution exploration of sub-seabed geological formations. Due to the uncertainty of the sound speed at full ocean depth, the travel-time positioning of sea surface reflected waves still has flaws in positioning arrays. This research reveals that the average sound speed of seawater selected for computing the array position only affects the vertical displacement of the arrays. thus, a polynomial fitting method is proposed to position the arrays. Because the nonuniform mass distribution complicates the array shape, first, the weight of the digital transmission unit is balanced by one designed floater so that the array shape becomes a simple convex curve during towing conditions. Afterward, one general sound speed is used to calculate the initial array position; then, the polynomial fitting method is used to tune the sound speed so that the seismic source and hydrophones are on the same convex curve. Finally, an accurate array position is calculated by the proposed positioning method, and the submarine shallow strata are imaged at a high resolution.