Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
312
result(s) for
"Zhu, Yining"
Sort by:
Whole-infrared-band camouflage with dual-band radiative heat dissipation
2023
Advanced multispectral detection technologies have emerged as a significant threat to objects, necessitating the use of multiband camouflage. However, achieving effective camouflage and thermal management across the entire infrared spectrum, especially the short-wave infrared (SWIR) band, remains challenging. This paper proposes a multilayer wavelength-selective emitter that achieves effective camouflage across the entire infrared spectrum, including the near-infrared (NIR), SWIR, mid-wave infrared (MWIR), and long-wave infrared (LWIR) bands, as well as the visible (VIS) band. Furthermore, the emitter enables radiative heat dissipation in two non-atmospheric windows (2.5–3 μm and 5–8 μm). The emitter’s properties are characterized by low emittance of 0.270/0.042/0.218 in the SWIR/MWIR/LWIR bands, and low reflectance of 0.129/0.281 in the VIS/NIR bands. Moreover, the high emittance of 0.742/0.473 in the two non-atmospheric windows ensures efficient radiative heat dissipation, which results in a temperature decrement of 14.4 °C compared to the Cr reference at 2000 W m
−2
input power density. This work highlights the role of solar radiance in camouflage, and provides a comprehensive guideline for developing multiband camouflage compatible with radiative heat dissipation, from the visible to LWIR.
Journal Article
Color-preserving passive radiative cooling for an actively temperature-regulated enclosure
2022
Active temperature control devices are widely used for the thermal management of enclosures, including vehicles and buildings. Passive radiative cooling has been extensively studied; however, its integration with existing actively temperature regulated and decorative enclosures has slipped out of the research at status quo. Here, we present a photonic-engineered dual-side thermal management strategy for reducing the active power consumption of the existing temperature-regulated enclosure without sacrificing its aesthetics. By coating the exterior and interior of the enclosure roof with two visible-transparent films with distinctive wavelength-selectivity, simultaneous control over the energy exchange among the enclosure with the hot sun, the cold outer space, the atmosphere, and the active cooler can be implemented. A power-saving of up to 63% for active coolers of the enclosure is experimentally demonstrated by measuring the heat flux compared to the ordinary enclosure when the set temperature is around 26°C. This photonic-engineered dual-side thermal management strategy offers facile integration with the existing enclosures and represents a new paradigm toward carbon neutrality.
Journal Article
Payload distribution and capacity of mRNA lipid nanoparticles
2022
Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics. It has been challenging to assess mRNA packaging characteristics in LNPs, including payload distribution and capacity, which are critical to understanding structure-property-function relationships for further carrier development. Here, we report a method based on the multi-laser cylindrical illumination confocal spectroscopy (CICS) technique to examine mRNA and lipid contents in LNP formulations at the single-nanoparticle level. By differentiating unencapsulated mRNAs, empty LNPs and mRNA-loaded LNPs via coincidence analysis of fluorescent tags on different LNP components, and quantitatively resolving single-mRNA fluorescence, we reveal that a commonly referenced benchmark formulation using DLin-MC3 as the ionizable lipid contains mostly 2 mRNAs per loaded LNP with a presence of 40%–80% empty LNPs depending on the assembly conditions. Systematic analysis of different formulations with control variables reveals a kinetically controlled assembly mechanism that governs the payload distribution and capacity in LNPs. These results form the foundation for a holistic understanding of the molecular assembly of mRNA LNPs.
Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics but assessing the mRNA packaging characteristics in LNPs is challenging. Here, the authors report that mRNA and lipid contents in LNP formulations can be quantitatively examined by multi-laser cylindrical illumination confocal spectroscopy at the single-nanoparticle level.
Journal Article
Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression
2022
Lipid nanoparticles hold great potential as an effective non-viral vector for nucleic acid-based gene therapy. Plasmid DNA delivery can result in extended transgene expression compared to mRNA-based technologies, yet there is a lack of systematic investigation into lipid nanoparticle compositions for plasmid DNA delivery. Here, we report a multi-step screening platform to identify optimized plasmid DNA lipid nanoparticles for liver-targeted transgene expression. To achieve this, we analyze the role of different helper lipids and component ratios in plasmid DNA lipid nanoparticle-mediated gene delivery in vitro and in vivo. Compared to mRNA LNPs and in vivo-jetPEI/DNA nanoparticles, the identified plasmid DNA lipid nanoparticles successfully deliver transgenes and mediate prolonged expression in the liver following intravenous administration in mice. By addressing different physiological barriers in a stepwise manner, this screening platform can efficiently down select effective lipid nanoparticle candidates from a lipid nanoparticle library of over 1000 formulations. In addition, we substantially extend the duration of plasmid DNA nanoparticle-mediated transgene expression using a DNA/siRNA co-delivery approach that targets transcription factors regulating inflammatory response pathways. This lipid nanoparticle-based co-delivery strategy further highlights the unique advantages of an extended transgene expression profile using plasmid DNA delivery and offers new opportunities for DNA-based gene medicine applications.
Plasmid DNA offers extended transgene expression duration compared to mRNA technologies. Here, using a multi-step screening platform, the authors report the best performing nanoparticle formulations for liver-targeted plasmid DNA expression in vivo.
Journal Article
Night-time radiative warming using the atmosphere
2023
Night-time warming is vital for human production and daily life. Conventional methods like active heaters are energy-intensive, while passive insulating films possess restrictions regarding space consumption and the lack of heat gain. In this work, a nanophotonic-based night-time warming strategy that passively inhibits thermal radiation of objects while actively harnessing that of atmosphere is proposed. By using a photonic-engineered thin film that exhibits high reflectivity (~0.91) in the atmospheric transparent band (8–14 μm) and high absorptivity (~0.7) in the atmospheric radiative band (5–8 and 14–16 μm), temperature rise of 2.1 °C/4.4 °C compared to typical low-e film and broadband absorber is achieved. Moreover, net heat loss as low as 9 W m
−2
is experimentally observed, compared to 16 and 39 W m
−2
for low-e film and broadband absorber, respectively. This strategy suggests an innovative way for sustainable warming, thus contributes to addressing the challenges of climate change and promoting global carbon neutrality.
Journal Article
Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage
2022
Multispectral camouflage, especially for the infrared-microwave range, is an essential technology for the safety of facilities, vehicles, and humans. So far, it has been realized mainly by high infrared specular reflection and high microwave absorption. However, external infrared sources can expose the target through specular reflection; also, the heat production from microwave absorption can increase the infrared radiation. This work proposes a multispectral camouflage scheme based on hierarchical visible-infrared-microwave scattering surfaces to address these issues. The proposed device exhibits: (1) low infrared emissivity (
= 0.17) and low infrared specular reflectivity (
= 0.13), maintaining low infrared radiation and capability to overcome the presence of an external infrared source simultaneously; (2) high scattering in microwave range, with −10 dB radar cross section reduction bandwidth of 8–13 GHz, simultaneously achieving microwave camouflage and reducing the heat production; (3) tunability of color for visible camouflage. This work proposes a method to control scattering over visible-infrared-microwave bands, thereby introducing a new design paradigm for modern camouflage technology.
Journal Article
A method for material decomposition and quantification with grating based phase CT
2021
Material decomposition (MD) is an important application of computer tomography (CT). For phase contrast imaging, conventional MD methods are categorized into two types with respect to different operation sequences, i.e., “before” or “after” image reconstruction. Both categories come down to two-step methods, which have the problem of noise amplification. In this study, we incorporate both phase and absorption (PA) information into MD process, and correspondingly develop a simultaneous algebraic reconstruction technique (SART). The proposed method is referred to as phase & absorption material decomposition-SART (PAMD-SART). By iteratively solving an optimization problem, material composition and substance quantification are reconstructed directly from absorption and differential phase projections. Comparing with two-step MD, the proposed one-step method is superior in noise suppression and accurate decomposition. Numerical simulations and synchrotron radiation based experiments show that PAMD-SART outperforms the classical MD method (image-based and dual-energy CT iterative method), especially for the quantitative accuracy of material equivalent atomic number.
Journal Article
Mixed Comparison of Different Exercise Interventions for Function, Respiratory, Fatigue, and Quality of Life in Adults With Amyotrophic Lateral Sclerosis: Systematic Review and Network Meta-Analysis
by
Xuan, Rongrong
,
Zhu, Yining
,
Huang, Jialu
in
Amyotrophic lateral sclerosis
,
Atrophy
,
Brain stem
2022
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease whose primary hallmark is the progressive degeneration of motor neurons in the brainstem, spinal cord, and cerebral cortex that leads to weakness, spasticity, fatigue, skeletal muscle atrophy, paralysis, and even death. Exercise, as a non-pharmacological tool, may generally improve muscle strength, cardiovascular function, and quality of life. However, there are conflicting reports about the effect of exercise training in adults with ALS. Aims: This systematic review and network meta-analysis is aiming to conduct a mixed comparison of different exercise interventions for function, respiratory, fatigue, and quality of life in adults with ALS. Methods: Randomized controlled trials with ALS participants were screened and included from the databases of PubMed, Medline, and Web of Science. Physical exercise interventions were reclassified into aerobic exercise, resistance training, passive exercise, expiratory muscle exercise, and standard rehabilitation. Patient-reported outcome measures would be reclassified from perspectives of function, respiratory, fatigue, and quality of life. The effect size would be transferred into the percentage change of the total score. Result: There were 10 studies included, with the agreement between authors reaching a kappa-value of 0.73. The network meta-analysis, which was conducted under the consistency model identified that a combined program of aerobic exercise, resistance exercise, and standard rehabilitation showed the highest potential to improve quality of life (0.64 to be the best) and reduce the fatigue (0.39 to be the best) for ALS patients, while exercise program of aerobic and resistance training showed the highest potential (0.51 to be the best) to improve ALS patients’ physical function. The effect of exercise on the respiratory was still unclear. Conclusion: A multi-modal exercise and rehabilitation program would be more beneficial to ALS patients. However, the safety and guide for practice remain unclear, further high-quality RCTs with a larger sample are still needed.
Journal Article
Construction of Climate Suitability Evaluation Model for Winter Wheat and Analysis of Its Spatiotemporal Characteristics in Beijing-Tianjin-Hebei Region, China
by
Hua, Jing
,
Hong, Lei
,
Li, Ming
in
Agricultural production
,
Climate adaptation
,
Climate change
2025
Climate change alters climatic factors, which in turn affect the suitability of crops to grow. Winter wheat is a major crop in the Beijing-Tianjin-Heibei region of China. To assess the climate factors on winter wheat production, the meteorological data (temperature, precipitation, sunshine, etc.) from 25 stations in the target region the Beijing-Tianjin-Hebei region of China from 1961 to 2010, the winter wheat yield data from 1978 to 2010, and the growth stages were used. A model of the suitability of light, temperature, and water was subsequently developed to quantitatively analyze the spatial and temporal variability of the suitability of the winter wheat to the climate of the region. Temperature suitability was high during the sowing and grouting periods (temperature suitability peaks at 0.941 during grouting) and lowest in the rejuvenation period. In terms of spatial distribution, it is strong in the south and low in the north, and it exhibits a gradual increase in interannual variation. Precipitation suitability fluctuates steadily, with a peak in the tillering stage and a trough in the jointing stage. In terms of spatial distribution, it is highest in the northeast and decreases in the west; in inter-annual changes, it fluctuates strongly with weak overall growth. Sunshine suitability is stable at 0.9 or above. In spatial distribution, it is high in the northwest and low in the southeast, and it decreases slowly in the interannual variations. The trend of climatic suitability is consistent with temperature and precipitation, showing a pattern of falling first and then rising. In terms of spatial distribution, the overall climate suitability is high in the south and low in the north. In inter-annual changes, climate suitability generally increases slowly. Temperature and precipitation are key factors. Moisture stress became the most important factor for winter wheat cultivation in the region. Sunshine conditions are typically sufficient. This study provides a theoretical basis for a rational layout of winter wheat growing areas in the Beijing-Tianjin-Hebei region and the full utilization of climatic resources.
Journal Article
Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China
2025
Under the global climate change, variations in climatic elements such as temperature, precipitation, and sunshine duration significantly impact the growth, development, and yield formation of winter wheat. A precise understanding of the impact of climate change on winter wheat growth and the scientific use of meteorological resources are crucial for ensuring food security, optimizing agricultural planting structures and agricultural sustainability. This study uses statistical methods and focuses on the Beijing–Tianjin–Hebei region, utilizing data from 25 meteorological stations from 1961 to 2010 and winter wheat yield data from 1978 to 2010. Twelve refined indicators encompassing temperature, precipitation, and sunshine duration were constructed. Path analysis was employed to determine their weights, establishing a comprehensive climate indicator model. Results indicate: Temperature indicators in the region show an upward trend, with accumulated temperature of the whole growth period increasing at a rate of 61.1 °C·d/10a. Precipitation indicators reveal precipitation of the whole growth period rising at 3.9 mm/10a and pre-winter precipitation increasing at 4.2 mm/10a. Sunshine duration exhibits a declining trend, decreasing at 72.7 h/10a during the whole growth period. Comprehensive climate indicators decrease from south to north, with the southwest region exhibiting the highest tendency rate (18.41), while the central and southern regions show greater variability. This study provides scientific basis for optimizing winter wheat planting patterns and rational utilization of climate resources in the Beijing–Tianjin–Hebei region. It recommends prioritizing cultivation in western southern Hebei and improving water conditions in the central and northern areas through irrigation technology to support sustainable crop production.
Journal Article