Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Zhuang, Mengru"
Sort by:
Cbln1 regulates axon growth and guidance in multiple neural regions
2022
The accurate construction of neural circuits requires the precise control of axon growth and guidance, which is regulated by multiple growth and guidance cues during early nervous system development. It is generally thought that the growth and guidance cues that control the major steps of axon development have been defined. Here, we describe cerebellin-1 (Cbln1) as a novel cue that controls diverse aspects of axon growth and guidance throughout the central nervous system (CNS) by experiments using mouse and chick embryos. Cbln1 has previously been shown to function in late neural development to influence synapse organization. Here, we find that Cbln1 has an essential role in early neural development. Cbln1 is expressed on the axons and growth cones of developing commissural neurons and functions in an autocrine manner to promote axon growth. Cbln1 is also expressed in intermediate target tissues and functions as an attractive guidance cue. We find that these functions of Cbln1 are mediated by neurexin-2 (Nrxn2), which functions as the Cbln1 receptor for axon growth and guidance. In addition to the developing spinal cord, we further show that Cbln1 functions in diverse parts of the CNS with major roles in cerebellar parallel fiber growth and retinal ganglion cell axon guidance. Despite the prevailing role of Cbln1 as a synaptic organizer, our study discovers a new and unexpected function for Cbln1 as a general axon growth and guidance cue throughout the nervous system.
Journal Article
The m6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells
2022
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N 6 -methyladenosine (m 6 A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m 6 A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Journal Article
The m6A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons
by
Jiang, Chunxuan
,
Chen, Mengxian
,
Wang, Nijia
in
cerebellar parallel fibers
,
local translation
,
Proteins
2021
Messenger RNA m6A modification is shown to regulate local translation in axons. However, how the m6A codes in axonal mRNAs are read and decoded by the m6A reader proteins is still unknown. Here, it is found that the m6A readers YTHDF1 and YTHDF2 are both expressed in cerebellar granule cells (GCs) and their axons. Knockdown (KD) of YTHDF1 or YTHDF2 significantly increases GC axon growth rates in vitro. By integrating anti‐YTHDF1&2 RIP‐Seq with the quantitative proteomic analysis or RNA‐seq after KD of YTHDF1 or YTHDF2, a group of transcripts which may mediate the regulation of GC axon growth by YTHDFs is identified. Among them, Dvl1 and Wnt5a, encoding the key components of Wnt pathway, are further found to be locally translated in axons, which are controlled by YTHDF1 and YTHDF2, respectively. Specific ablation of Ythdf1 or Ythdf2 in GCs increases parallel fiber growth, promotes synapse formation in cerebellum in vivo, and improves motor coordination ability. Together, this study identifies a mechanism by which the m6A readers YTHDF1 and YTHDF2 work synergistically on the Wnt5a pathway through regulating local translation in GC axons to control cerebellar parallel fiber development. The m6A readers, YTHDF1 and YTHDF2, negatively regulate axon growth of cerebellar granule cells (GCs) by mediating local translation of Dvl1 and Wnt5a in axons, respectively. Conditional knockout (cKO) of Ythdf1 or Ythdf2 in cerebellar GCs enhances parallel fiber growth and GC‐PC (Purkinje cells) synapse formation, which eventually improves the motor coordination ability of cKO mice.
Journal Article
YTHDF2 in dentate gyrus is the m6A reader mediating m6A modification in hippocampus-dependent learning and memory
2023
N
6
-methyladenosine (m
6
A) has been demonstrated to regulate learning and memory in mice. To investigate the mechanism by which m
6
A modification exerts its function through its reader proteins in the hippocampus, as well as to unveil the specific subregions of the hippocampus that are crucial for memory formation, we generated dentate gyrus (DG)-, CA3-, and CA1-specific
Ythdf1
and
Ythdf2
conditional knockout (cKO) mice, respectively. Surprisingly, we found that only the DG-specific
Ythdf2
cKO mice displayed impaired memory formation, which is inconsistent with the previous report showing that YTHDF1 was involved in this process. YTHDF2 controls the stability of its target transcripts which encode proteins that regulate the elongation of mossy fibers (MF), the axons of DG granule cells. DG-specific
Ythdf2
ablation caused MF overgrowth and impairment of the MF-CA3 excitatory synapse development and transmission in the stratum lucidum. Thus, this study identifies the m
6
A reader YTHDF2 in dentate gyrus as the only regulator that mediates m
6
A modification in hippocampus-dependent learning and memory.
Journal Article
The m.sup.6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells
2022
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N.sup.6-methyladenosine (m.sup.6A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m.sup.6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Journal Article
YTHDF2 in dentate gyrus is the m 6 A reader mediating m 6 A modification in hippocampus-dependent learning and memory
by
Liu, Chao
,
Geng, Xiaoqi
,
Zhang, Zhuxia
in
Animals
,
Axons - metabolism
,
Dentate Gyrus - metabolism
2023
N
-methyladenosine (m
A) has been demonstrated to regulate learning and memory in mice. To investigate the mechanism by which m
A modification exerts its function through its reader proteins in the hippocampus, as well as to unveil the specific subregions of the hippocampus that are crucial for memory formation, we generated dentate gyrus (DG)-, CA3-, and CA1-specific Ythdf1 and Ythdf2 conditional knockout (cKO) mice, respectively. Surprisingly, we found that only the DG-specific Ythdf2 cKO mice displayed impaired memory formation, which is inconsistent with the previous report showing that YTHDF1 was involved in this process. YTHDF2 controls the stability of its target transcripts which encode proteins that regulate the elongation of mossy fibers (MF), the axons of DG granule cells. DG-specific Ythdf2 ablation caused MF overgrowth and impairment of the MF-CA3 excitatory synapse development and transmission in the stratum lucidum. Thus, this study identifies the m
A reader YTHDF2 in dentate gyrus as the only regulator that mediates m
A modification in hippocampus-dependent learning and memory.
Journal Article
The m 6 A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells
2022
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the
-methyladenosine (m
A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of
in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the
cKO mice show improved visual acuity compared with control mice. We further demonstrate that
cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m
A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Journal Article
The m 6 A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons
by
Jiang, Chunxuan
,
Chen, Mengxian
,
Wang, Nijia
in
Animals
,
Axons - metabolism
,
Cerebellum - metabolism
2021
Messenger RNA m 6 A modification is shown to regulate local translation in axons. However, how the m 6 A codes in axonal mRNAs are read and decoded by the m 6 A reader proteins is still unknown. Here, it is found that the m 6 A readers YTHDF1 and YTHDF2 are both expressed in cerebellar granule cells (GCs) and their axons. Knockdown (KD) of YTHDF1 or YTHDF2 significantly increases GC axon growth rates in vitro. By integrating anti‐YTHDF1&2 RIP‐Seq with the quantitative proteomic analysis or RNA‐seq after KD of YTHDF1 or YTHDF2, a group of transcripts which may mediate the regulation of GC axon growth by YTHDFs is identified. Among them, Dvl1 and Wnt5a , encoding the key components of Wnt pathway, are further found to be locally translated in axons, which are controlled by YTHDF1 and YTHDF2, respectively. Specific ablation of Ythdf1 or Ythdf2 in GCs increases parallel fiber growth, promotes synapse formation in cerebellum in vivo, and improves motor coordination ability. Together, this study identifies a mechanism by which the m 6 A readers YTHDF1 and YTHDF2 work synergistically on the Wnt5a pathway through regulating local translation in GC axons to control cerebellar parallel fiber development.
Journal Article
Bovine male germline stem-like cells cultured in serum- and feeder-free medium
2016
Male germline stem cells (mGSCs) presented in male testis are responsible for spermatogenesis during their whole life. However, little information can be found on the culture of bovine mGSCs, and the current culture system needs to be improved. In this study, we compared the effects of several commercial serum-free media and different extra-cellular matrix on the enrichment and cultivation of mGSCs. To find out the best culture condition, the biological characteristics of the cultured cells were evaluated by morphological observation, RT-PCR and immunofluorescent staining. According to the cells’ condition in different experiment groups, we found out an efficient cultivation system for bovine mGSCs derived from neonate testis. In this serum- and feeder-free medium, the cultured cells maintained the typical morphology, and expressed specific surface markers of both pluripotent ES cells and mGSCs, including SSEA-1, CD49f, C-MYC, PLZF, GFRα1, LIN28, NANOG, Oct4 and SOX2 in commercial human ESCs medium PeproGrow-hESC + BIO (6-bromoindirubin-3′-oxime). Embryoid bodies, derived from the bovine mGSCs, and were formed by ganging drop culture. The retinoic acid induced bovine mGSCs were positive for Stra8, SCP3, DZAL, EMA1 and VASA, and resembled spermatid cells morphologically. Thus, we found an efficient bovine mGSCs-cultivation system, which is lack in serum and feeder.
Journal Article