Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Zidell, Aliza"
Sort by:
SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins
by
Pedro, Helio F.
,
Mohassel, Payam
,
Bönnemann, Carsten G.
in
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - genetics
,
Development and progression
2022
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons. Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids (SLs), cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased SL synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause peripheral hereditary sensory and autonomic neuropathy type 1 (HSAN1) due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS-expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.
Journal Article
The IGSF1 Deficiency Syndrome May Present with Normal Free T4 Levels, Severe Obesity, or Premature Testicular Growth
2021
Our objective was to further expand the spectrum of clinical characteristics of the
deficiency syndrome in affected males. These characteristic include almost universal congenital central hypothyroidism (CeH) with disharmonious pubertal development (normally timed testicular growth, but delayed rise of serum testosterone), macroorchidism, increased body mass index (BMI), and decreased attentional control. In addition, a subset of patients show prolactin deficiency, transient partial growth hormone deficiency in childhood and increased growth hormone secretion in adulthood. We present a family in which the proband was diagnosed with CeH and low serum prolactin. Severe weight gain started at two years old, with a BMI of 42.3 at 13.9 years. Testicular enlargement (5-6 mL, 3.8-4.3 standard deviation score) started aged three years. A pathogenic variant was found in the
gene: c.3411_3412del, p.(Tyr1137*). His brother was referred for short stature at age 13 years and was diagnosed with CeH, normal serum prolactin and IGF-1, and disharmonious puberty. In four male relatives (the proband’s brother and three cousins) with the variant (one adult), free thyroxine (fT4) was below the lower limit of the reference range in two, and just above this limit in the other two. Three were overweight or obese, adolescents had disharmonious pubertal development and the adult had profound macroorchidism. In conclusion, male hemizygous carriers of a pathogenic
variant can present with fT4 concentration above the lower limit of the reference range while severe early onset obesity or premature testicular growth are part of the phenotypic spectrum.
Journal Article
Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis
by
Tarnopolsky, Mark
,
Konersman, Chamindra G.
,
Bönnemann, Carsten G.
in
631/45/287/1196
,
692/699/375/1917/1285
,
Adolescent
2021
Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show
SPTLC1
variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting
SPTLC1
variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with
SPTLC1
variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the
SPTLC1
ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.
Clinical and genetic evaluation of individuals with childhood-onset amyotrophic lateral sclerosis identifies a new monogenic cause for early-onset ALS and proposes a specific metabolic mechanism leading to motor neuron disease via sphingolipid excess.
Journal Article
SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins
by
Saute, Jonas A Morales
,
Pedro, Helio F
,
Mohassel, Payam
in
Amino acids
,
Amyotrophic lateral sclerosis
,
Autonomic nervous system
2022
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons. Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids (SLs), cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased SL synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause peripheral hereditary sensory and autonomic neuropathy type 1 (HSAN1) due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALSexpressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.
Journal Article
Randomized trial of proactive rapid genetic counseling versus usual care for newly diagnosed breast cancer patients
by
Hooker, Gillian
,
Kelly, Scott P
,
Peshkin, Beth N
in
BRCA1 protein
,
BRCA2 protein
,
Breast cancer
2018
PurposeBreast cancer patients who carry BRCA1/BRCA2 gene mutations may consider bilateral mastectomy. Having bilateral mastectomy at the time of diagnosis not only reduces risk of a contralateral breast cancer, but can eliminate the need for radiation therapy and yield improved reconstruction options. However, most patients do not receive genetic counseling or testing at the time of their diagnosis. In this trial, we tested proactive rapid genetic counseling and testing (RGCT) in newly diagnosed breast cancer patients in order to facilitate pre-surgical genetic counseling and testing.MethodsWe recruited newly diagnosed breast cancer patients at increased risk for carrying a BRCA1/2 mutation. Of 379 eligible patients who completed a baseline survey, 330 agreed to randomization in a 2:1 ratio to RGCT (n = 220) versus UC (n = 108). Primary outcomes were genetic counseling and testing uptake and breast cancer surgical decisions.ResultsRGCT led to higher overall (83.8% vs. 54.6%; p < 0.0001) and pre-surgical (57.8% vs. 38.7%; p = 0.001) genetic counseling uptake compared to UC. Despite higher rates of genetic counseling, RGCT did not differ from UC in overall (54.1% vs. 49.1%, p > 0.10) or pre-surgical (30.6% vs. 27.4%, p > 0.10) receipt of genetic test results nor did they differ in uptake of bilateral mastectomy (26.6% vs. 21.8%, p > 0.10).ConclusionsAlthough RGCT yielded increased genetic counseling participation, this did not result in increased rates of pre-surgical genetic testing or impact surgical decisions. These data suggest that those patients most likely to opt for genetic testing at the time of diagnosis are being effectively identified by their surgeons.
Journal Article
SPTLC1 variants associated with childhood onset amyotrophic lateral sclerosis produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins
2022
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Mutations in the SPTLC1 subunit of serine-palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased sphingolipid synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause the peripheral sensory neuropathy HSAN1 due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.