Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Zielinski, Dirk"
Sort by:
“Interchangeability” of PD-L1 immunohistochemistry assays: a meta-analysis of diagnostic accuracy
Different clones, protocol conditions, instruments, and scoring/readout methods may pose challenges in introducing different PD-L1 assays for immunotherapy. The diagnostic accuracy of using different PD-L1 assays interchangeably for various purposes is unknown. The primary objective of this meta-analysis was to address PD-L1 assay interchangeability based on assay diagnostic accuracy for established clinical uses/purposes. A systematic search of the MEDLINE database using PubMed platform was conducted using “PD-L1” as a search term for 01/01/2015 to 31/08/2018, with limitations “English” and “human”. 2,515 abstracts were reviewed to select for original contributions only. 57 studies on comparison of two or more PD-L1 assays were fully reviewed. 22 publications were selected for meta-analysis. Additional data were requested from authors of 20/22 studies in order to enable the meta-analysis. Modified GRADE and QUADAS-2 criteria were used for grading published evidence and designing data abstraction templates for extraction by reviewers. PRISMA was used to guide reporting of systematic review and meta-analysis and STARD 2015 for reporting diagnostic accuracy study. CLSI EP12-A2 was used to guide test comparisons. Data were pooled using random-effects model. The main outcome measure was diagnostic accuracy of various PD-L1 assays. The 22 included studies provided 376 2×2 contingency tables for analyses. Results of our study suggest that, when the testing laboratory is not able to use an Food and Drug Administration-approved companion diagnostic(s) for PD-L1 assessment for its specific clinical purpose(s), it is better to develop a properly validated laboratory developed test for the same purpose(s) as the original PD-L1 Food and Drug Administration-approved immunohistochemistry companion diagnostic, than to replace the original PD-L1 Food and Drug Administration-approved immunohistochemistry companion diagnostic with a another PD-L1 Food and Drug Administration-approved companion diagnostic that was developed for a different purpose.
Optimization and validation of PD-L1 immunohistochemistry staining protocols using the antibody clone 28-8 on different staining platforms
Several immunohistochemistry (IHC) assays have been developed to assess tumor programmed death-ligand 1 (PD-L1) expression levels in patients who are candidates for programmed death-1 (PD-1)/PD-L1 inhibitor therapy. The PD-L1 IHC 28-8 pharmDx kit is FDA-approved as a complementary diagnostic and CE-marked as an in vitro diagnostic device for nivolumab therapy in melanoma and specific lung cancer subtypes (and for squamous cell carcinoma of the head and neck/urothelial carcinoma in Europe only). Kit availability is limited outside the United States, and its use requires the Dako Autostainer Link 48 platform, which is unavailable in many laboratories. Validated laboratory-developed tests based on 28-8 concentrated antibody outside the kit are needed. This study compared the results from PD-L1 expression level analysis across four immunohistochemistry platforms (Dako Autostainer Link 48, Dako Omnis, Leica Bond-III, and Ventana BenchMark ULTRA) with the 28-8 pharmDx kit in lung cancer (multiple histologies), melanoma, and head and neck cancer (multiple histologies). Samples were prepared per protocol for each platform and stained using PD-L1 IHC 28-8 pharmDx kit on Dako Autostainer Link 48, and per protocol for each platform. The control samples (tonsil and placenta tissue; cell lines with prespecified PD-L1 expression levels) were tested to evaluate the specificity and the sensitivity of test assays. An agreement level of 0.90 with the pharmDx kit was set for each platform. Inter- and intra-assay reliability were assessed. Evaluable samples were lung cancer = 29; melanoma = 31; head and neck cancer = 30. Mean agreement was calculated for PD-L1 expression levels of ≥1%, ≥5%, ≥10%, and ≥50%. Mean overall agreement for all indications was 0.87–0.99. Inter- and intra-assay of scoring/classification repeatability was 100%. Analysis of PD-L1 expression levels using laboratory-developed immunohistochemistry assays with 28-8 antibody may be permissible if the platform is validated using reference samples with defined expression levels.
Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients
Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.
Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2
HsfA2 is a heat stress (hs)-induced Hsf in peruvian tomato (Lycopersicon peruvianum) and the cultivated form Lycopersicon esculentum. Due to the high activator potential and the continued accumulation during repeated cycles of heat stress and recovery, HsfA2 becomes a dominant Hsf in thermotolerant cells. The formation of heterooligomeric complexes with HsfA1 leads to nuclear retention and enhanced transcriptional activity of HsfA2. This effect seems to represent one part of potential molecular mechanisms involved in its activity control. As shown in this paper, the activity of HsfA2 is also controlled by a network of nucleocytoplasmic small Hsps influencing its solubility, intracellular localization and activator function. By yeast two-hybrid interaction and transient coexpression studies in tobacco (Nicotiana plumbaginifolia) mesophyll protoplasts, we found that tomato (Lycopersicon esculentum) Hsp17.4-CII acts as corepressor of HsfA2. Given appropriate conditions, both proteins together formed large cytosolic aggregates which could be solubilized in presence of class CI sHsps. However, independent of the formation of aggregates or of the nucleocytoplasmic distribution of HsfA2, its transcriptional activity was specifically repressed by interaction of Hsp17.4-CII with the C-terminal activator domain. Although not identical in all aspects, the situation with the highly expressed, heat stress-inducible Arabidopsis HsfA2 was found to be principally similar. In corresponding reporter assays its activity was repressed in presence of AtHsp17.7-CII but not of AtHsp17.6-CII or LpHsp17.4-CII.
Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the “working horse” of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients: e0147739
Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.
Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants
We describe a new class of plant small heat stress proteins (sHsps) with dominant nuclear localization (Hsp17-CIII). The corresponding proteins in tomato, Arabidopsis, and rice are encoded by unique genes containing a short intron in the β4-encoding region of the α-crystallin domain (ACD). The strong nuclear localization results from a cluster of basic amino acid residues in the loop between β5 and β6 of the ACD. Using yeast 2-hybrid tests, analyses of native complexes of the sHsps, and immunofluorescence data, we demonstrate that, in contrast to earlier observations (Kirschner et al 2000), proteins of the sHsp classes CI, CII, and CIII interact with each other, thereby influencing oligomerization state and intracellular localization.
Reduced mRNA expression in paraffin-embedded tissue identifies MLH1- and MSH2-deficient colorectal tumours and potential mutation carriers
Based on the principle of nonsense-mediated mRNA decay, we sought to identify MLH1 or MSH2-deficient colorectal tumours through relative quantification of mRNA expression with real-time PCR (RT-PCR) analysis. MLH1 and MSH2 mRNAs were almost equally expressed as defined by MLH1 to MSH2 transcript ratio (mean 1.41) in microsatellite stable, mismatch repair (MMR) proficient tumours ( n  = 16). A close correlation between loss of protein expression and MMR–mRNA levels was found in highly microsatellite instable (MSI-H) tumours deficient of MLH1 or MSH2. MLH1/MSH2 ratio was low in 11 sporadic and nine hereditary MLH1-deficient carcinomas (mean 0.51), whereas the ratio was high in 17 MSH2-deficient hereditary non-polyposis colorectal cancer (HNPCC) associated carcinomas (mean 6.8). Notably, in the normal tissues of HNPCC patients with MSH2 mutations, the MLH1/MSH2 transcript ratios were significantly elevated (ratio > 2.0) as compared to the ratios of normal mucosa in patients with MMR-proficient tumours (27 of 32 ratio < 2.0; p  = 0.00113). Analysis of B-lymphocytes of HNPCC patients with proven MMR gene mutation confirmed these findings. In conclusion, RT-PCR allows relative quantification of MMR gene mRNA expression in formalin-fixed and paraffin-embedded tissue. Furthermore, this approach enables quantification of haploinsufficiency due to nonsense-mediated mRNA decay in normal tissue and B-lymphocytes from patients carrying MSH2 germline mutations and may be useful for identification of asymptomatic carriers of pathogenic germline mutations.
Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments
Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-β-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.
IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis
IL-17-producing CD8 + (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC -to- TBX21 , along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8 + T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORγt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond. Dimethyl fumarate (DMF) is a therapy for multiple sclerosis (MS) with undetermined mechanism of action. Here the authors find that clinical response to DMF associates with decrease in IL-17-producing CD8 +  T cells (Tc17), delineate molecular pathways involved, and show that DMF suppresses Tc17 pathogenicity in a mouse model of MS.