Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Zieman, Abigail"
Sort by:
The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation
2021
While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.
Journal Article
A role for keratins in supporting mitochondrial organization and function in skin keratinocytes
by
Parent, Carole A
,
Lombard, David B
,
Weigert, Roberto
in
Calcium signalling
,
Cell Biology
,
Cell differentiation
2020
Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS) and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)-associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders. Footnotes * The manuscript has been revised in response to an internal review and to address comments received from external anonymous reviewers at a scientific journal. The electron microscopy data section has been expanded, more details are provided in how the Seahorse assessment of mitochondrial physiology was performed, and the text has been streamlined.
The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation
by
Stewart, Rachel K
,
Zubek, Amanda
,
King, Diane E
in
Biosensors
,
Cell Biology
,
Cell differentiation
2020
Abstract While the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate. Competing Interest Statement The authors have declared no competing interest. Footnotes * This revised manuscript includes three major additions: 1) further characterization of the N2G-JM-TSMod LINC complex tension sensor (Fig. 1); 2) ATAC-seq analysis demonstrating precocious accessibility of epidermal differentiation genes in the absence of LINC complexes (Fig. 5) and 3) use of mouse keratinocytes lacking beta-1 integrin to probe the requirement for cell-ECM engagement to both drive high tension on the LINC complex (Fig. 1) and to repress epidermal differentiation (Fig. 4). Supplementary files for bioinformatic analysis and the links to the raw sequencing data are also provided. * https://www.ncbi.nlm.nih.gov/bioproject/PRJNA636991