Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
201
result(s) for
"Zimmermann, Günter"
Sort by:
Cyclic Water Injection Potentially Mitigates Seismic Risks by Promoting Slow and Stable Slip of a Natural Fracture in Granite
2021
Induced seismicity associated with fluid injection has raised serious concerns for the safety and efficiency of geo-energy systems. Cyclic injection has recently been proposed as an alternative injection scheme to reduce the large magnitude injection-induced seismicity. However, the influence of cyclic injection on the activation of natural fractures in granite and the resulting seismic risk is not yet clear. This study investigates the injection-induced activation of a critically stressed natural fracture in a granite core sample, particularly focusing on the comparison between monotonic and cyclic water injection under pressure-controlled and volume-controlled conditions. Experimental results show that the acceleration and deceleration of fracture slip are modulated by the shear stress imbalance between the fixed shear stress and the evolving frictional strength of the fracture. Fracture slip affects the fluid pressure distribution on the fracture, which in turn regulates the frictional strength of the fracture. At a small total shear displacement (i.e., ~ 0.9 mm in this study), cyclic injection with a restricted peak injection pressure results in aseismic fracture slip at much smaller peak slip rates compared to that during the monotonic injection. On the one hand, the more uniform reduction in effective normal stress caused by cyclic injection encourages slow and stable fracture slip, characterized by the smaller peak slip rates. On the other hand, the flowback of injected fluid or suspension of injection could prevent the occurrence of fast-accelerated fracture slip during cyclic injection. However, the fracture can become unstable when it has experienced a considerable amount of total shear displacement (larger than ~ 0.9 mm in this study), and likely gained a significantly enhanced permeability. Continued injection after the unstable shut-in stage, signified by an unusual increase in slip rate and an accelerated drop in injection pressure, could result in rapid and unstable fracture slip.
Journal Article
Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments
2021
The ability to control induced seismicity in energy technologies such as geothermal heat and shale gas is an important factor in improving the safety and reducing the seismic hazard of reservoirs. As fracture propagation can be unavoidable during energy extraction, we propose a new approach that optimises the radiated seismicity and hydraulic energy during fluid injection by using cyclic- and pulse-pumping schemes. We use data from laboratory-, mine-, and field-scale injection experiments performed in granitic rock and observe that both the seismic energy and the permeability-enhancement process strongly depend on the injection style and rock type. Replacing constant-flow-rate schemes with cyclic pulse injections with variable flow rates (1) lowers the breakdown pressure, (2) modifies the magnitude-frequency distribution of seismic events, and (3) has a fundamental impact on the resulting fracture pattern. The concept of fatigue hydraulic fracturing serves as a possible explanation for such rock behaviour by making use of depressurisation phases to relax crack-tip stresses. During hydraulic fatigue, a significant portion of the hydraulic energy is converted into rock damage and fracturing. This finding may have significant implications for managing the economic and physical risks posed to communities affected by fluid-injection-induced seismicity.
Journal Article
Laboratory True Triaxial Hydraulic Fracturing of Granite Under Six Fluid Injection Schemes and Grain-Scale Fracture Observations
by
Zang Arno
,
Yeom, Kim Kwang
,
Yoon Jeoung-Seok
in
Acoustic emission
,
Axial stress
,
Crack propagation
2020
Laboratory hydraulic fracturing tests on cubic granite specimens with a side length of 100 mm were performed under true triaxial stress conditions combined with acoustic emission monitoring. Six different injection schemes were applied to investigate the influence of the injection scheme on hydraulic performance and induced seismicity during hydraulic fracturing. Three of these schemes are injection rate controlled: constant rate continuous injection (CCI), stepwise rate continuous injection (SCI), and cyclic progressive injection (CPI); the other three are pressurization rate controlled: stepwise pressurization (SP), stepwise pulse pressurization (SPP) and cyclic pulse pressurization (CPP). The test results show that the SPP scheme achieves the highest increase in injectivity among the six schemes. The CPI scheme generates the lowest induced seismicity while the improvement in injectivity is the least pronounced. The CPP scheme allows increasing injectivity and decreasing induced seismicity, and is suggested as a promising alternative injection scheme for field applications. Thin section microscopic observations of fractured specimens show that intragranular fractures splitting microcline, orthoclase and quartz grains dominate the hydraulic fractures independent of the injection scheme. The SPP scheme creates the largest fracture length, which explains the highest injectivity value among all schemes. Tests with relatively low magnitude of maximum AE amplitude correspond to short fracture length and small portions of intragranular fractures in microcline grains. Quartz grains are more fractured than microcline and orthoclase grains, and quartz chips (natural proppants) are frequently observed adjacent to hydraulic fractures. The laboratory test results show the potential for hydraulic fracture growth control in field applications by advanced fluid injection schemes, i.e. cyclic pulse pressurization of granitic rock mass.
Journal Article
Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments
by
Zimmermann, Günter
,
Ki-Bok Min
,
Zang, Arno
in
Earthquake damage
,
Earthquakes
,
Enhanced geothermal systems
2018
Hydraulic stimulation treatments are standard techniques to access geologic resources which cannot economically be exploited with conventional methods. Fluid injection into unproductive formations may increase their permeability by forming new fractures and activating existing ones. A major risk of this process is a possible occurrence of seismic events that can potentially be felt on the surface or even cause minor damage. In this paper, an advanced fluid injection scheme is proposed that aims to mitigate these unwanted events and to improve the permeability enhancement process. Amongst other procedures, it involves different types of cyclic injection and a traffic light system specifically designed for cyclic injection schemes. The concept is applied to develop a stimulation design for the Pohang enhanced geothermal system site in Korea, where it was first deployed in the field in August 2017.
Journal Article
Fatigue Behavior of Granite Subjected to Cyclic Hydraulic Fracturing and Observations on Pressure for Fracture Growth
by
Jung SungGyu
,
Zimmermann Günter
,
Yeom, Kim Kwang
in
Acoustic emission
,
Acoustic fatigue
,
Amplitude
2021
This study aims to assess the fatigue behavior of granite subjected to cyclic hydraulic fracturing using cylindrical granite samples. Two sets of continuous and cyclic injection were carried out and monitored with acoustic emission (AE) sensors. In these experiments, the granite fatigue life or number of cycles to failure increased exponentially with decreasing maximum pressure during cyclic injection. Moreover, although cyclic injection induced more AEs, they were of lower energy compared to those under continuous injection. Similarly, the proportion of small-to-large-amplitude AEs, measured through the Gutenberg–Richter b value, was higher in cyclic injection cases compared to continuous injection cases. This implies a lower probability of observing large-amplitude AEs for cyclic injection at lower pressures. The damage process during cyclic injection was quantified with the cumulative absolute AE energy and depicted a three-stage process: an initial increase due to sample saturation, a steady linear increase before failure, and a nonlinear rapid increase leading to failure. Moreover, the slope of the cumulative energy during the second stage showed a relation with the pre-selected maximum pressure, increasing with increasing maximum pressure, and it was associated with the rate of stable enlargement of pre-existing microcracks that consequently induced fractures in the third stage. Finally, a decreasing trend of the pressure required for fracture initiation was considered to be analogous of field reopening pressures.
Journal Article
Evaluating Micro-Seismic Events Triggered by Reservoir Operations at the Geothermal Site of Groß Schönebeck (Germany)
by
Heidbach, Oliver
,
Zimmermann, Günter
,
Jacquey, Antoine B
in
Activation
,
Computer simulation
,
Criteria
2018
This study aims at evaluating the spatial and temporal distribution of 26 micro-seismic events which were triggered by hydraulic stimulation at the geothermal site of Groß Schönebeck (Germany). For this purpose, the alteration of the in-situ stress state and the related change of slip tendency for existing fault zones due to stimulation treatments and reservoir operations is numerical simulated. Changes in slip tendency can potentially lead to reactivation of fault zones, the related movement can lead to the occurrence of seismic events. In the current numerical study, results obtained based on the thermal–hydraulic–mechanical coupled simulation are compared to field observations. In particular, the study focuses on describing the fault reactivation potential: (1) under in-situ stress conditions; (2) during a waterfrac stimulation treatment; and (3) during a projected 30 years production and injection period at the in-situ geothermal test-site Groß Schönebeck. The in-situ stress state indicates no potential for fault reactivation. During a waterfrac stimulation treatment, micro-seismic events were recorded. Our current evaluation shows an increase of slip tendency during the treatment above the failure level in the direct vicinity of the micro-seismic events. During the projected production and injection period, despite increased thermal stress, the values for slip tendency are below the threshold for fault reactivation. Based on these results, and to prove the applied method to evaluate the observed micro-seismic events, a final discussion is opened. This includes the in-situ stress state, the role of pre-existing fault zones, the adopted criterion for fault reactivation, and a 3D rock failure criterion based on true triaxial measurements.
Journal Article
Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary)
2024
Low injectivity is often experienced in geothermal doublets installed in sandstone reservoirs. This even led to a shutdown of the Mezőberény (Hungary) geothermal site. An on-site campaign was carried out in January 2021 to prepare a stimulation aiming to enhance the transmissivity of the sedimentary reservoir and the near-wellbore zone of this site. Previous studies have concluded that insufficient injectivity may be linked to a high skin effect in the near well-bore zone and pore clogging in combination with the low net sandstone content of the fluvio-deltaic reservoir. A chemical soft stimulation based on the injection of hydrochloric acid (HCl) was successfully used to unclog and recover the well injectivity. Despite such empirical evidence, the geochemical mechanisms leading to both, detrimental formation of clogging and the HCl-driven transmissivity restoration, have not yet been elucidated. This work presents the results of a novel analysis aiming at (a) predicting the dominant type of clogging forming in the near-well bore zone; (b) quantifying the drop in hydraulic conductivity as clogging occurs; and (c) supporting the optimization of the HCl dosage during the chemical soft stimulation. The study is supported by new experimental datasets never presented before from the Mezőberény site and a geochemical model set-up simulating the main mechanisms involved in the clogging and unclogging processes. It is concluded that the biofilm formation was the dominant, while the precipitation of calcite and amorphous ferrihydrite—later reduced to magnetite by microbes—was the secondary clogging mechanism: In the long-term (yearly scale) simulating the hydraulic conductivity showed a decline with forming scales; therefore, biofilm was presumably responsible for the experienced rapid (1 month) clogging. When modelling the chemical stimulation, the estimated amount of precipitated minerals was dissolved already with 2.5 mol of HCl per liter of water (~ 10 m/m%). Therefore, the 20 m/m% of HCl chosen during the field campaign might had a beneficial effect dissolving the potentially higher amount of scaling and/or the carbonate minerals of the matrix near the wellbore. Overall, it is concluded that the chemical and the microbial analyses together with the geochemical model were critical to tailor the remediation attempts and to propose further development or reconstruction of the surface system before going into operation to prevent recurrent impairments. Our findings highlight the importance of interactions of various clogging mechanisms with each other as well as with the reservoir processes and provide approaches to tackle the issue of injectivity drop by characterizing and quantifying their effects.
Journal Article
The Effects of Temperature and Pressure on the Porosity Evolution of Flechtinger Sandstone
by
Zimmermann, Günter
,
Hassanzadegan, Alireza
,
Urpi, Luca
in
Applied sciences
,
Buildings. Public works
,
Civil Engineering
2014
A porosity change influences the transport properties and the elastic moduli of rock while circulating water in a geothermal reservoir. The static and dynamic elastic moduli can be derived from the slope of stress–strain curves and velocity measurements, respectively. Consequently, the acoustic velocities were measured while performing hydrostatic drained tests. The effect of temperature on static and dynamic elastic moduli and porosity variations of Flechtinger sandstone was investigated in a wide range of confining pressure from 2 to 55 MPa. The experiments were carried out in a conventional triaxial system whereas the pore pressure remained constant, confining pressure was cycled, and temperature was increased step wise (25, 60, 90, 120, and 140 °C). The porosity variation was calculated by employing two different theories: poroelasticity and crack closure. The porosity variation and crack porosity were determined by the first derivative of stress–strain curves and the integral of the second derivative of stress–strain curves, respectively. The crack porosity analysis confirms the creation of new cracks at high temperatures. The porosity variation was increasing with an increase in temperature at low effective pressures and was decreasing with a rise in temperature at high effective pressures. Both compressional and shear wave velocities were increasing with increasing pressure due to progressive crack closure. Furthermore, the thermomechanical behavior of Flechtinger sandstone was characterized by an inversion effect where the sign of the temperature derivative of the drained bulk modulus changes.
Journal Article
Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland
by
Broccardo, Marco
,
Danciu, Laurentiu
,
Zimmermann, Günter
in
Analysis
,
Building damage
,
Drilling
2020
The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep-hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is often associated with fluid-induced seismicity, most of which is not felt on the surface but which, in rare cases, can be a nuisance to the population and even damage the nearby building stock. This study presents a first-of-its-kind pre-drilling probabilistic induced seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk. The results of the risk assessment indicate that the individual risk within a radius of 2 km around the injection point is below 0.1 micromorts, and damage risk is below 10−2, for the total duration of the project. However, these results are affected by several orders of magnitude of variability due to the deep uncertainties present at all levels of the analysis, indicating a critical need in updating this risk assessment with in situ data collected during the stimulation. Therefore, it is important to stress that this a priori study represents a baseline model and starting point to be updated and refined after the start of the project.
Journal Article