Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
138 result(s) for "Zitha, S"
Sort by:
Training end-to-end speech-to-text models on mobile phones
Training the state-of-the-art speech-to-text (STT) models in mobile devices is challenging due to its limited resources relative to a server environment. In addition, these models are trained on generic datasets that are not exhaustive in capturing user-specific characteristics. Recently, on-device personalization techniques have been making strides in mitigating the problem. Although many current works have already explored the effectiveness of on-device personalization, the majority of their findings are limited to simulation settings or a specific smartphone. In this paper, we develop and provide a detailed explanation of our framework to train end-to-end models in mobile phones. To make it simple, we considered a model based on connectionist temporal classification (CTC) loss. We evaluated the framework on various mobile phones from different brands and reported the results. We provide enough evidence that fine-tuning the models and choosing the right hyperparameter values is a trade-off between the lowest WER achievable, training time on-device, and memory consumption. Hence, this is vital for a successful deployment of on-device training onto a resource-limited environment like mobile phones. We use training sets from speakers with different accents and record a 7.6% decrease in average word error rate (WER). We also report the associated computational cost measurements with respect to time, memory usage, and cpu utilization in mobile phones in real-time.
Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.
Mixing‐Induced Mineral Precipitation in Porous Media: Front Development and Its Impact on Flow and Transport
Injectivity decline during brine reinjection poses a significant challenge in the geothermal industry, with reported cases of substantial injectivity reduction and in severe cases, complete well shutdown. Among the reasons behind these issues, chemical processes play a key role due to potential changes in the fluid properties throughout the operation cycle. When reinjected, the fluid with altered chemical composition mixes with in situ fluids, potentially triggering mineral precipitation, which can obstruct flow and reduce injectivity. To better characterize the mechanisms behind the mixing‐induced mineral precipitation processes, we performed a series of core‐flooding experiments combined with high‐resolution imaging techniques. Our study focuses on the direct visualization of barite precipitation fronts in Berea sandstone and characterizes their spatial and temporal evolution under varying flow conditions. Pressure response and time‐resolved 2D scanning were analyzed to capture real‐time changes in the system, whereas post‐experiment micro‐CT scanning, electron microprobe analysis, and mass spectrometry were employed to examine the morphology and distribution of the mineral deposits. Our results highlight the critical role of flow velocities on the kinetics of mixing‐induced precipitation and demonstrate how mineral accumulation may significantly reduce permeability. These findings provide valuable insights into the dynamics of mineral precipitation in porous media, highlighting the impact of flow conditions on formation damage in geothermal systems.
Investigation of certain physical–chemical features of oil recovery by an optimized alkali–surfactant–foam (ASF) system
The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline–surfactant–foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali–surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10 −1 –10 −3  mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.
Modeling and Experimental Validation of Rheological Transition During Foam Flow in Porous Media
Flow of nitrogen foam stabilized by alpha olefin sulfonate (C 14-16 AOS) was studied in a natural sandstone porous media using X-ray Computed Tomography. Foam was generated by a simultaneous injection of gas and surfactant solution into a porous medium initially saturated with the surfactant solution. It was found that the foam undergoes a transition from a weak to a strong state at a characteristic gas saturation of S gc  = 0.75 ± 0.02. This transition coincided with a substantial reduction in foam mobility by a two-order of magnitude and also with a large reduction in overall water saturation to as low as 0.10 ± 0.02. Foam mobility transition was interpreted by the surge of yield stress as gas saturation exceeded the S gc . We proposed a simple power-law functional relationship between yield stress and gas saturation. The proposed rheological model captured successfully the mobility transition of foams stabilized by different surfactant concentrations and for different core lengths.
Platelet and epithelial cell interations can be modeled in cell culture, and are not affected by dihomo-gamma-linolenic acid
Increasing evidence is implicating roles for platelets in the development and progression of ovarian cancer, a highly lethal disease that can arise from the fallopian tubes, and has no current method of early detection or prevention. Thrombosis is a major cause of mortality of ovarian cancer patients suggesting that the cancer alters platelet behavior. The objective of this study was to develop a cell culture model of the pathological interactions of human platelets and ovarian cancer cells, using normal FT epithelial cells as a healthy control, and to test effects of the anti-platelet dihomo-gamma-linolenic acid (DGLA) in the model. Both healthy and cancer cells caused platelet aggregation, however platelets only affected spheroid formation by cancer cells and had no effect on healthy cell spheroid formation. When naturally-formed spheroids of epithelial cells were exposed to platelets in transwell inserts that did not allow direct interactions of the two cell types, platelets caused increased size of the spheroids formed by cancer cells, but not healthy cells. When cancer cell spheroids formed using magnetic nanoshuttle technology were put in direct physical contact with platelets, the platelets caused spheroid condensation. In ovarian cancer cells, DGLA promoted epithelial-to-mesenchymal (EMT) transition at doses as low as 100 μM, and inhibited metabolic viability and induced apoptosis at doses ≥150 μM. DGLA doses ≤150 μM used to avoid direct DGLA effects on cancer cells, had no effect on the pathological interactions of platelets and ovarian cancer cells in our models. These results demonstrate that the pathological interactions of platelets with ovarian cancer cells can be modeled in cell culture, and that DGLA has no effect on these interactions, suggesting that targeting platelets is a rational approach for reducing cancer aggressiveness and thrombosis risk in ovarian cancer patients, however DGLA is not an appropriate candidate for this strategy.
Effectiveness and cost-effectiveness of reactive, targeted indoor residual spraying for malaria control in low-transmission settings: a cluster-randomised, non-inferiority trial in South Africa
Increasing insecticide costs and constrained malaria budgets could make universal vector control strategies, such as indoor residual spraying (IRS), unsustainable in low-transmission settings. We investigated the effectiveness and cost-effectiveness of a reactive, targeted IRS strategy. This cluster-randomised, open-label, non-inferiority trial compared reactive, targeted IRS with standard IRS practice in northeastern South Africa over two malaria seasons (2015–17). In standard IRS clusters, programme managers conducted annual mass spray campaigns prioritising areas using historical data, expert opinion, and other factors. In targeted IRS clusters, only houses of index cases (identified through passive surveillance) and their immediate neighbours were sprayed. The non-inferiority margin was 1 case per 1000 person-years. Health service costs of real-world implementation were modelled from primary and secondary data. Incremental costs per disability-adjusted life-year (DALY) were estimated and deterministic and probabilistic sensitivity analyses conducted. This study is registered with ClinicalTrials.gov, NCT02556242. Malaria incidence was 0·95 per 1000 person-years (95% CI 0·58 to 1·32) in the standard IRS group and 1·05 per 1000 person-years (0·72 to 1·38) in the targeted IRS group, corresponding to a rate difference of 0·10 per 1000 person-years (–0·38 to 0·59), demonstrating non-inferiority for targeted IRS (p<0·0001). Per additional DALY incurred, targeted IRS saved US$7845 (2902 to 64 907), giving a 94–98% probability that switching to targeted IRS would be cost-effective relative to plausible cost-effectiveness thresholds for South Africa ($2637 to $3557 per DALY averted). Depending on the threshold used, targeted IRS would remain cost-effective at incidences of less than 2·0–2·7 per 1000 person-years. Findings were robust to plausible variation in other parameters. Targeted IRS was non-inferior, safe, less costly, and cost-effective compared with standard IRS in this very-low-transmission setting. Saved resources could be reallocated to other malaria control and elimination activities. Joint Global Health Trials.
The role of density inhomogeneity and anisotropy in the final outcome of dissipative collapse
In this work, we employ the “horizon” function introduced by Ivanov (Int J Mod Phys D 25:1650049, 2016b) to study radiating stellar models with a generalized Vaidya exterior. Since the star is dissipating energy in the form of a radial heat flux, the radial pressure at the boundary is non-vanishing. We study the boundary condition which encodes the temporal behaviour of the model. Utilizing a scheme developed by Ivanov, we provide several solutions to the modified junction condition. We show that the presence of strings, allow for the collapse to a black hole or the complete burning of a star.
A Comparative Study of Gas Flooding and Foam-Assisted Chemical Flooding in Bentheimer Sandstones
A laboratory study of principal immiscible gas flooding schemes is reported. Very well-controlled experiments on continuous gas injection, water-alternating-gas (WAG) and alkaline–surfactant–foam (ASF) flooding were conducted. The merits of WAG and ASF compared to continuous gas injection were examined. The impact of ultra-low oil–water (o/w) interfacial tension (IFT), an essential feature of the ASF scheme along with foaming, on oil mobilisation and displacement of residual oil to waterflood was also assessed. Incremental oil recoveries and related displacement mechanisms by ASF and WAG compared to continuous gas injection were investigated by conducting CT-scanned core-flood experiments using n-hexadecane and Bentheimer sandstone cores. Ultimate oil recoveries for WAG and ASF at under-optimum salinity (o/w IFT of 10 −1  mN/m) were found to be similar [60 ± 5% of the oil initially in place (OIIP)]. However, ultimate oil recovery for ASF at (near-)optimum salinity (o/w IFT of 10 −2 mN/m) reached 74 ± 8% of the OIIP. Results support the idea that WAG increases oil recovery over continuous gas injection by drastically increasing the trapped gas saturation at the end of the first few WAG cycles. ASF flooding was able to enhance oil recovery over WAG by effectively lowering o/w IFT (< 10 −1  mN/m) for oil mobilisation. ASF at (near-)optimum salinity increased clean oil fraction in the production stream over under-optimum salinity ASF.
Modeling of Foam Flow Using Stochastic Bubble Population Model and Experimental Validation
The transient foam flow, i. e. the forward movement of foam front until breakthrough in a one-dimensional flow, in an oil-free porous medium was studied using the stochastic bubble population (SBP) model. The premise of this model is that foam flow in porous media is a complex fluid and bubble generation is a stochastic process. The SBP foam model describes the net bubble generation using three parameters: maximum bubble density and bubble generation and destruction coefficients. The corresponding governing equations, a system of nonlinear partial differential equations in the saturation, pressure and bubble density, were solved using the IMPES method. The sensitivity to the main physical parameters was also analyzed. It was found that the increase in the maximum bubble density leads to the generation of stronger foam, characterized by a slower foam propagation rate and a larger foam mobility reduction. The bubble generation coefficient K g mainly controlled the foam generation rate such that a higher K g led to a more rapidly increasing bubble density. A comparison between the numerically obtained saturation and pressure data with those obtained from the experiments at which foam was generated by co-injecting nitrogen and C 14 - 16 alpha olefin sulfonate surfactant in Bentheimer sandstone was provided. X-ray CT scans were also obtained to visualize the foam displacement process and to determine fluid saturations at different times. A good match was obtained between the numerical and the experimental data, which confirms that the SBP foam model is robust and reproduces the main features of the transient behavior of foam flow in a homogeneous porous media.