Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
5
result(s) for
"Ziyadidegan Samira"
Sort by:
Quantifying Mental Stress Using Cardiovascular Responses: A Scoping Review
by
Janfaza, Vahid
,
Razavi, Moein
,
Ziyadidegan, Samira
in
Artificial intelligence
,
Entropy
,
Heart beat
2025
(1) Background: Physiological responses, such as heart rate and heart rate variability, have been increasingly utilized to monitor, detect, and predict mental stress. This review summarizes and synthesizes previous studies which analyzed the impact of mental stress on heart activity as well as mathematical, statistical, and visualization methods employed in such analyses. (2) Methods: A total of 119 articles were reviewed following the Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. Non-English documents, studies not related to mental stress, and publications on machine learning techniques were excluded. Only peer-reviewed journals and conference proceedings were considered. (3) Results: The studies revealed that heart activities and behaviors changed during stressful events. The majority of the studies utilized descriptive statistical tests, including t-tests, analysis of variance (ANOVA), and correlation analysis, to assess the statistical significance between stress and non-stress events. However, most of them were performed in controlled laboratory settings. (4) Conclusions: Heart activity shows promise as an indicator for detecting stress events. This review highlights the application of time series techniques, such as autoregressive integrated moving average (ARIMA), detrended fluctuation analysis, and autocorrelation plots, to study heart rate rhythm or patterns associated with mental stress. These models analyze physiological data over time and may help in understanding acute and chronic cardiovascular responses to stress.
Journal Article
Factors affecting the COVID-19 risk in the US counties: an innovative approach by combining unsupervised and supervised learning
by
Razavi Moein
,
Ziyadidegan Samira
,
Erraguntla Madhav
in
Cluster analysis
,
Clustering
,
Coronaviruses
2022
The COVID-19 disease spreads swiftly, and nearly three months after the first positive case was confirmed in China, Coronavirus started to spread all over the United States. Some states and counties reported high number of positive cases and deaths, while some reported lower COVID-19 related cases and death. In this paper, the factors that could affect the risk of COVID-19 infection and death were analyzed in county level. An innovative method by using K-means clustering and several classification models is utilized to determine the most critical factors. Results showed that longitudinal coordinate and population density, latitudinal coordinate, percentage of non-white people, percentage of uninsured people, percent of people below poverty, percentage of Elderly people, number of ICU beds per 10,000 people, percentage of smokers were the most significant attributes.
Journal Article
Machine Learning, Deep Learning, and Data Preprocessing Techniques for Detecting, Predicting, and Monitoring Stress and Stress-Related Mental Disorders: Scoping Review
by
Janfaza, Vahid
,
Razavi, Moein
,
Ziyadidegan, Samira
in
Addictive behaviors
,
Algorithms
,
Anxiety disorders
2024
Mental stress and its consequent mental health disorders (MDs) constitute a significant public health issue. With the advent of machine learning (ML), there is potential to harness computational techniques for better understanding and addressing mental stress and MDs. This comprehensive review seeks to elucidate the current ML methodologies used in this domain to pave the way for enhanced detection, prediction, and analysis of mental stress and its subsequent MDs.
This review aims to investigate the scope of ML methodologies used in the detection, prediction, and analysis of mental stress and its consequent MDs.
Using a rigorous scoping review process with PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines, this investigation delves into the latest ML algorithms, preprocessing techniques, and data types used in the context of stress and stress-related MDs.
A total of 98 peer-reviewed publications were examined for this review. The findings highlight that support vector machine, neural network, and random forest models consistently exhibited superior accuracy and robustness among all ML algorithms examined. Physiological parameters such as heart rate measurements and skin response are prevalently used as stress predictors due to their rich explanatory information concerning stress and stress-related MDs, as well as the relative ease of data acquisition. The application of dimensionality reduction techniques, including mappings, feature selection, filtering, and noise reduction, is frequently observed as a crucial step preceding the training of ML algorithms.
The synthesis of this review identified significant research gaps and outlines future directions for the field. These encompass areas such as model interpretability, model personalization, the incorporation of naturalistic settings, and real-time processing capabilities for the detection and prediction of stress and stress-related MDs.
Journal Article
Machine Learning, Deep Learning and Data Preprocessing Techniques for Detection, Prediction, and Monitoring of Stress and Stress-related Mental Disorders: A Scoping Review
by
Janfaza, Vahid
,
Razavi, Moein
,
Ziyadidegan, Samira
in
Algorithms
,
Data acquisition
,
Deep learning
2024
Background: Mental stress and its consequent mental disorders (MDs) are significant public health issues. With the advent of machine learning (ML), there's potential to harness computational techniques for better understanding and addressing these problems. This review seeks to elucidate the current ML methodologies employed in this domain to enhance the detection, prediction, and analysis of mental stress and MDs. Objective: This review aims to investigate the scope of ML methodologies used in the detection, prediction, and analysis of mental stress and MDs. Methods: Utilizing a rigorous scoping review process with PRISMA-ScR guidelines, this investigation delves into the latest ML algorithms, preprocessing techniques, and data types used in the context of stress and stress-related MDs. Results and Discussion: A total of 98 peer-reviewed publications were examined. The findings highlight that Support Vector Machine (SVM), Neural Network (NN), and Random Forest (RF) models consistently exhibit superior accuracy and robustness among ML algorithms. Physiological parameters such as heart rate measurements and skin response are prevalently used as stress predictors due to their rich explanatory information and ease of data acquisition. Dimensionality reduction techniques, including mappings, feature selection, filtering, and noise reduction, are frequently observed as crucial steps preceding the training of ML algorithms. Conclusion: This review identifies significant research gaps and outlines future directions for the field. These include model interpretability, model personalization, the incorporation of naturalistic settings, and real-time processing capabilities for the detection and prediction of stress and stress-related MDs. Keywords: Machine Learning; Deep Learning; Data Preprocessing; Stress Detection; Stress Prediction; Stress Monitoring; Mental Disorders
Factors affecting the COVID-19 risk in the US counties: an innovative approach by combining unsupervised and supervised learning
by
Erraguntla, Madhav
,
Razavi, Moein
,
Ziyadidegan, Samira
in
Cluster analysis
,
Clustering
,
Coronaviruses
2021
The COVID-19 disease spreads swiftly, and nearly three months after the first positive case was confirmed in China, Coronavirus started to spread all over the United States. Some states and counties reported high number of positive cases and deaths, while some reported lower COVID-19 related cases and mortality. In this paper, the factors that could affect the risk of COVID-19 infection and mortality were analyzed in county level. An innovative method by using K-means clustering and several classification models is utilized to determine the most critical factors. Results showed that mean temperature, percent of people below poverty, percent of adults with obesity, air pressure, population density, wind speed, longitude, and percent of uninsured people were the most significant attributes