Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
80
result(s) for
"Zollo, Loredana"
Sort by:
Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans
by
Artoni, Fiorenzo
,
Zollo, Loredana
,
Camboni, Domenico
in
Amputation
,
Amputees
,
Artificial Organs
2016
Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands. Our hands provide us with a wide variety of information about our surroundings, enabling us to detect pain, temperature and pressure. Our sense of touch also allows us to interact with objects by feeling their texture and solidity. However, completely reproducing a sense of touch in artificial or prosthetic hands has proven challenging. While commercial prostheses can mimic the range of movements of natural limbs, even the latest experimental prostheses have only a limited ability to ‘feel’ the objects being manipulated. Oddo, Raspopovic et al. have now brought this ability a step closer by exploiting an artificial fingertip and appropriate neural interfaces through which different textures can be identified. The initial experiments were performed in four healthy volunteers with intact limbs. Oddo, Raspopovic et al. connected the artificial fingertip to the volunteers via an electrode inserted into a nerve in the arm. When moved over a rough surface, sensors in the fingertip produced patterns of electrical pulses that stimulated the nerve, causing the volunteers to feel like they were touching the surface. The volunteers were even able to tell the difference between the different surface textures the artificial fingertip moved across. The temporary electrodes used in this group of volunteers are unsuitable for use with prosthetic limbs because they can easily be knocked out of position. Therefore, in a further experiment involving a volunteer who had undergone an arm amputation a number of years previously, Oddo, Raspopovic et al. tested an implanted electrode array that could, in principle, remain in place long-term. This volunteer could also identify the different textures the artificial fingertip touched, with a slightly higher degree of accuracy than the previous group of intact volunteers. Further studies are now required to explore the potential of this approach in larger groups of volunteers.
Journal Article
The WGD—A Dataset of Assembly Line Working Gestures for Ergonomic Analysis and Work-Related Injuries Prevention
by
Lauretti, Clemente
,
Tamantini, Christian
,
Zollo, Loredana
in
Algorithms
,
Artificial intelligence
,
Assembly lines
2021
This paper wants to stress the importance of human movement monitoring to prevent musculoskeletal disorders by proposing the WGD—Working Gesture Dataset, a publicly available dataset of assembly line working gestures that aims to be used for worker’s kinematic analysis. It contains kinematic data acquired from healthy subjects performing assembly line working activities using an optoelectronic motion capture system. The acquired data were used to extract quantitative indicators to assess how the working tasks were performed and to detect useful information to estimate the exposure to the factors that may contribute to the onset of musculoskeletal disorders. The obtained results demonstrate that the proposed indicators can be exploited to early detect incorrect gestures and postures and, consequently to prevent work-related disorders. The approach is general and independent on the adopted motion analysis system. It wants to provide indications for safely performing working activities. For example, the proposed WGD can also be used to evaluate the kinematics of workers in real working environments thanks to the adoption of unobtrusive measuring systems, such as wearable sensors through the extracted indicators and thresholds.
Journal Article
Hierarchical Human-Inspired Control Strategies for Prosthetic Hands
by
Zollo, Loredana
,
Cordella, Francesca
,
Gentile, Cosimo
in
Activities of daily living
,
Amputation
,
Amputees
2022
The abilities of the human hand have always fascinated people, and many studies have been devoted to describing and understanding a mechanism so perfect and important for human activities. Hand loss can significantly affect the level of autonomy and the capability of performing the activities of daily life. Although the technological improvements have led to the development of mechanically advanced commercial prostheses, the control strategies are rather simple (proportional or on/off control). The use of these commercial systems is unnatural and not intuitive, and therefore frequently abandoned by amputees. The components of an active prosthetic hand are the mechatronic device, the decoding system of human biological signals into gestures and the control law that translates all the inputs into desired movements. The real challenge is the development of a control law replacing human hand functions. This paper presents a literature review of the control strategies of prosthetics hands with a multiple-layer or hierarchical structure, and points out the main critical aspects of the current solutions, in terms of human’s functions replicated with the prosthetic device. The paper finally provides several suggestions for designing a control strategy able to mimic the functions of the human hand.
Journal Article
Design of a testbed for mechanical and thermal stimulation in somatosensory studies
by
Zollo, Loredana
,
Cordella, Francesca
,
Sperduti, Marika
in
631/378/1689/2610
,
631/378/2620/2621
,
631/378/2620/410
2025
To address the low repeatability and accuracy of traditional technologies for testing the human somatosensory system, this work presents a novel mechatronic testbed. The testbed allows for the delivery of mechanical and thermal stimuli with a high spatial resolution, enabling continuous or discrete stimulation with a small fixed area and in a single experimental session. The testbed was employed to identify the mechanical/thermal innocuous and painful thresholds and the human ability to distinguish the nature of a painful stimulus, on both the hand and the forearm of 12 healthy volunteers. The results demonstrated the capability of the developed testbed to produce a range of forces that can induce different sensations (touch or pain). We found a statistical difference between the innocuous and painful thresholds, regardless of the tested anatomical spot. In this paper, a small thermal stimulation tip was appositely selected to study the reaction to a focused thermal stimulus that has been poorly investigated so far. The results highlighted a statistically significant difference between the two stimulated sites for the cool sensation and the hot pain. Moreover, the painful recognition task was sped up by the use of the developed testbed, which allowed a more fair comparison among the applied stimuli, increasing the accuracy, repeatability, and consistency when compared to the state-of-the art.
Journal Article
A Classification Method for Workers’ Physical Risk
by
Rondoni, Cristiana
,
Tamantini, Christian
,
Guglielmelli, Eugenio
in
Algorithms
,
Discriminant analysis
,
Electrocardiography
2023
In Industry 4.0 scenarios, wearable sensing allows the development of monitoring solutions for workers’ risk prevention. Current approaches aim to identify the presence of a risky event, such as falls, when it has already occurred. However, there is a need to develop methods capable of identifying the presence of a risk condition in order to prevent the occurrence of the damage itself. The measurement of vital and non-vital physiological parameters enables the worker’s complex state estimation to identify risk conditions preventing falls, slips and fainting, as a result of physical overexertion and heat stress exposure. This paper aims at investigating classification approaches to identify risk conditions with respect to normal physical activity by exploiting physiological measurements in different conditions of physical exertion and heat stress. Moreover, the role played in the risk identification by specific sensors and features was investigated. The obtained results evidenced that k-Nearest Neighbors is the best performing algorithm in all the experimental conditions exploiting only information coming from cardiorespiratory monitoring (mean accuracy 88.7±7.3% for the model trained with max(HR), std(RR) and std(HR)).
Journal Article
Affective state estimation based on Russell’s model and physiological measurements
by
Cittadini, Roberto
,
Lauretti, Clemente
,
Tamantini, Christian
in
631/378/1457
,
639/166/985
,
692/700
2023
Affective states are psycho-physiological constructs connecting mental and physiological processes. They can be represented in terms of arousal and valence according to the Russel’s model and can be extracted from physiological changes in human body. However, a well-established optimal feature set and a classification method effective in terms of accuracy and estimation time are not present in the literature. This paper aims at defining a reliable and efficient approach for real-time affective state estimation. To obtain this, the optimal physiological feature set and the most effective machine learning algorithm, to cope with binary as well as multi-class classification problems, were identified. ReliefF feature selection algorithm was implemented to define a reduced optimal feature set. Supervised learning algorithms, such as K-Nearest Neighbors (KNN), cubic and gaussian Support Vector Machine, and Linear Discriminant Analysis, were implemented to compare their effectiveness in affective state estimation. The developed approach was tested on physiological signals acquired on 20 healthy volunteers during the administration of images, belonging to the International Affective Picture System, conceived for inducing different affective states. ReliefF algorithm reduced the number of physiological features from 23 to 13. The performances of machine learning algorithms were compared and the experimental results showed that both accuracy and estimation time benefited from the optimal feature set use. Furthermore, the KNN algorithm resulted to be the most suitable for affective state estimation. The results of the assessment of arousal and valence states on 20 participants indicate that KNN classifier, adopted with the 13 identified optimal features, is the most effective approach for real-time affective state estimation.
Journal Article
Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review
by
Gruppioni, Emanuele
,
Mereu, Federico
,
Zollo, Loredana
in
Activities of daily living
,
Amputation
,
Amputation Stumps
2021
The evolution of technological and surgical techniques has made it possible to obtain an even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control. On the technological side, a great deal of research has been conducted in order to evaluate various types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based control. In the literature, different control performance metrics, which have been evaluated on TMR subjects, have been introduced, but no accepted reference standard defines the better strategy for evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based on different metrics makes it difficult the definition of standard guidelines for comprehending the potentiality of the proposed control systems. Additionally, there is a lack of evidence about the comparison of different evaluation approaches or the presence of guidelines on the most suitable test to proceed for a TMR patients case study. Thus, this review aims at identifying these limitations by examining the several studies in the literature on TMR subjects, with different amputation levels, and proposing a standard method for evaluating the control performance metrics.
Journal Article
Invasive Intraneural Interfaces: Foreign Body Reaction Issues
by
Di Pino, Giovanni
,
Zollo, Loredana
,
Vadalà, Gianluca
in
Biocompatibility
,
Biomaterials
,
Biomedical materials
2017
Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible
/
models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach.
Journal Article
NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation
by
Colazzo, Giorgio
,
Davalli, Angelo
,
Dellacasa Bellingegni, Alberto
in
Algorithms
,
Amputation
,
Amputees
2017
Background
Currently, the typically adopted hand prosthesis surface electromyography (sEMG) control strategies do not provide the users with a natural control feeling and do not exploit all the potential of commercially available multi-fingered hand prostheses. Pattern recognition and machine learning techniques applied to sEMG can be effective for a natural control based on the residual muscles contraction of amputated people corresponding to phantom limb movements. As the researches has reached an advanced grade accuracy, these algorithms have been proved and the embedding is necessary for the realization of prosthetic devices. The aim of this work is to provide engineering tools and indications on how to choose the most suitable classifier, and its specific internal settings for an embedded control of multigrip hand prostheses.
Methods
By means of an innovative statistical analysis, we compare 4 different classifiers: Nonlinear Logistic Regression, Multi-Layer Perceptron, Support Vector Machine and Linear Discriminant Analysis, which was considered as ground truth. Experimental tests have been performed on sEMG data collected from 30 people with trans-radial amputation, in which the algorithms were evaluated for both performance and computational burden, then the statistical analysis has been based on the Wilcoxon Signed-Rank test and statistical significance was considered at
p
< 0.05.
Results
The comparative analysis among NLR, MLP and SVM shows that, for either classification performance and for the number of classification parameters, SVM attains the highest values followed by MLP, and then by NLR. However, using as unique constraint to evaluate the maximum acceptable complexity of each classifier one of the typically available memory of a high performance microcontroller, the comparison pointed out that for people with trans-radial amputation the algorithm that produces the best compromise is NLR closely followed by MLP. This result was also confirmed by the comparison with LDA with time domain features, which provided not significant differences of performance and computational burden between NLR and LDA.
Conclusions
The proposed analysis would provide innovative engineering tools and indications on how to choose the most suitable classifier based on the application and the desired results for prostheses control.
Journal Article
Navigation benchmarking for autonomous mobile robots in hospital environment
by
Tamantini, Christian
,
Zollo, Loredana
,
Rondoni, Cristiana
in
639/166/985
,
692/700
,
Benchmarking - methods
2024
The widespread adoption of robotic technologies in healthcare has opened up new perspectives for enhancing accuracy, effectiveness and quality of medical procedures and patients’ care. Special attention has been given to the reliability of robots when operating in environments shared with humans and to the users’ safety, especially in case of mobile platforms able to navigate autonomously. From the analysis of the literature, it emerges that navigation tests carried out in a hospital environment are preliminary and not standardized. This paper aims to overcome the limitations in the assessment of autonomous mobile robots navigating in hospital environments by proposing: (i) a structured benchmarking protocol composed of a set of standardized tests, taking into account conditions with increasing complexity, (ii) a set of quantitative performance metrics. The proposed approach has been used in a realistic setting to assess the performance of two robotic platforms, namely HOSBOT and TIAGo, with different technical features and developed for different applications in a clinical scenario.
Journal Article