Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18
result(s) for
"Zongran Yang"
Sort by:
Molecular Mechanisms of Plant Trichome Development
2022
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana , Gossypium hirsutum , Oryza sativa , Cucumis sativus , Solanum lycopersicum , Nicotiana tabacum , and Artemisia annua . Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Journal Article
The roles of HD-ZIP proteins in plant abiotic stress tolerance
by
Yuanyuan Zhang
,
Yuxia Li
,
Jinjiao Guo
in
Abiotic stress
,
Abscisic acid
,
Agricultural production
2022
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I–IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis ( Arabidopsis thaliana ) and rice ( Oryza sativa ) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Journal Article
RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance
2022
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Journal Article
LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants
2022
Limonium bicolor is a dicotyledonous recretohalophyte with several multicellular salt glands on the leaves. The plant can directly secrete excess salt onto the leaf surface through the salt glands to maintain ion homeostasis under salt stress. Therefore, it is of great significance to study the functions of genes related to salt gland development and salt tolerance. In this study, an R1-type MYB transcription factor gene was screened from L. bicolor , named LbMYB48 , and its expression was strongly induced by salt stress. Subcellular localization analysis showed that LbMYB48 was localized in the nucleus. LbMYB48 protein has transcriptional activation activity shown by transcriptional activation experiments. The density of salt glands in the leaves and the salt secretion capacity of LbMYB48 -silenced lines were decremented, as demonstrated by the leaf disc method to detect sodium ion secretion. Furthermore, salt stress index experiments revealed that the ability of LbMYB48 -silenced lines to resist salt stress was significantly reduced. LbMYB48 regulates salt gland development and salt tolerance in L. bicolor mainly by regulating the expression of epidermal cell development related genes such as LbCPC-like and LbDIS3 and salt stress-related genes ( LbSOSs , LbRLKs , and LbGSTs ) as demonstrated by RNA-seq analysis of LbMYB48-silenced lines. The heterologous over-expression of LbMYB48 in Arabidopsis thaliana improves salt tolerance of plants by stabilizing ion and osmotic balance and is likely to be involved in the abscisic acid signaling pathway. Therefore, LbMYB48 , a transcriptional activator regulates the salt gland development of L. bicolor and salt tolerance of L. bicolor and A. thaliana.
Journal Article
Comprehensive Studies on the Regulation of Type 2 Diabetes by Cucurbitane-Type Triterpenoids in Momordica charantia L.: Insights from Network Pharmacology and Molecular Docking and Dynamics
2025
Background/Objectives: Momordica charantia L. (M. charantia), a widely cultivated and frequently consumed medicinal plant, is utilized in traditional medicine. Cucurbitane-type triterpenoids, significant saponin components of M. charantia, exhibit hypoglycemic effects; however, the underlying mechanisms remain unclear. Methods: This study utilized comprehensive network pharmacology to identify potential components of M. charantia cucurbitane-type triterpenoids that may influence type 2 diabetes mellitus (T2DM). Additionally, molecular docking and molecular dynamics studies were performed to assess the stability of the interactions between the selected components and key targets. Results: In total, 22 candidate active components of M. charantia cucurbitane-type triterpenoids and 1165 disease targets for T2DM were identified through database screening. Molecular docking and molecular dynamics simulations were conducted for five key components (Kuguacin J, 25-O-methylkaravilagenin D, Momordicine I, momordic acid, and Kuguacin S) and three key targets (AKT1, IL6, and SRC), and the results demonstrated stable binding. The experimental results indicate that the interactions between momordic acid-AKT1 and momordic acid-IL6 are stable. Conclusions: Momordic acid may play a crucial role in M. charantia’s regulation of T2DM, and AKT1 and IL6 seem to be key targets for the therapeutic action of M. charantia in managing T2DM.
Journal Article
Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders
by
Chen, Naihong
,
Zhang, Zhao
,
Chu, Shifeng
in
Blood-brain barrier
,
Brain injury
,
Brain research
2021
Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo . While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
Journal Article
The cervical lymph node contributes to peripheral inflammation related to Parkinson’s disease
by
Zhang, Jing
,
Huang, Yang
,
Wang, Xuejing
in
alpha-Synuclein - metabolism
,
Animal models
,
Animal sciences
2023
Background
Peripheral inflammation is an important feature of Parkinson’s disease (PD). However, if and how CNS pathology is involved in the peripheral inflammation in PD remains to be fully investigated. Recently, the existence of meningeal lymphatics and its involvement in draining cerebral spinal fluid (CSF) to the cervical lymph node has been discovered. It is known that meningeal lymphatic dysfunction exists in idiopathic PD. The deep cervical lymph node (dCLN) substantially contributes to the drainage of the meningeal lymphatics. In addition, one of the lymphatics draining components, CSF, contains abundant α-synuclein (α-syn), a protein critically involved in PD pathogenesis and neuroinflammation. Thus, we began with exploring the possible structural and functional alterations of the dCLN in a PD mouse model (A53T mice) and investigated the role of pathological α-syn in peripheral inflammation and its potential underlying molecular mechanisms.
Methods
In this study, the transgenic mice (prnp-SNCA*A53T) which specifically overexpressed A53T mutant α-syn in CNS were employed as the PD animal model. Immunofluorescent and Hematoxylin and eosin staining were used to evaluate structure of dCLN. Inflammation in dCLNs as well as in bone-marrow-derived macrophages (BMDMs) was assessed quantitatively by measuring the mRNA and protein levels of typical inflammatory cytokines (including IL-1β, IL-6 and TNF-α). Intra-cisterna magna injection, flow cytometric sorting and electrochemiluminescence immunoassays were applied to investigate the lymphatic drainage of α-syn from the CNS. RNA-seq and Western blot were used to explore how pathological α-syn mediated the inflammation in PD mice.
Results
The results unequivocally revealed substantially enlarged dCLNs, along with slow lymphatic flow, and increased inflammation in the dCLNs of A53T mice. Oligomeric α-syn drained from CSF potently activated macrophages in the dCLN via endoplasmic reticulum (ER) stress. Notably, inhibition of ER stress effectively suppressed peripheral inflammation in PD mice.
Conclusions
Our findings indicate that lymph node enlargement is closely related to macrophage activation, induced by meningeal lymphatics draining oligomeric α-syn, and contributes to the peripheral inflammation in PD. In addition, ER stress is a potential therapeutic target to ameliorate PD pathogenesis.
Journal Article
Coupled RecurDyn-EDEM simulation and experimental analysis of a precision fertilization device
2025
With the continuous expansion of orchard planting area and fruit production in China, the problem of low precision in the application of powdered organic fertilizers has become increasingly prominent. To address this issue, a specialized grooved-wheel fertilizer discharge device for pit fertilization machines was designed and optimized in this study. A RecurDyn–EDEM coupled simulation model was established, in which the fertilizer application rate—defined as the ratio of fertilizer mass deposited at the pit bottom to the total discharged mass—was selected as the evaluation index. A Central Composite Design (CCD) was employed to develop a regression model and optimize both operational and structural parameters. Specifically, the dial plate speed and scraper inclination angle were chosen as key factors for optimization. The results indicated that the optimal parameters were a dial plate speed of 64.3 r/min and a scraper inclination angle of − 17.3°, under which the single application amount reached 637.98 g and the fertilizer application rate was 97.57%. The deviation between the bench test and the simulation under the optimal parameters was only 2.11%. This research, by integrating theoretical analysis, numerical simulation, and bench testing, provides a valuable reference for the innovative design of powdered organic fertilizer applicators in orchards of the hilly regions of Southwest China.
Journal Article
α-Synuclein-containing erythrocytic extracellular vesicles: essential contributors to hyperactivation of monocytes in Parkinson’s disease
by
Wu, Yufeng
,
Zhang, Jing
,
Yu, Zhenwei
in
alpha-Synuclein - metabolism
,
Animals
,
Biomedical and Life Sciences
2022
Background
Immune system dysfunction, including higher levels of peripheral monocytes and inflammatory cytokines, is an important feature of Parkinson’s disease (PD) pathogenesis, although the mechanism underlying the process remains to be investigated. In the central nervous system, it is well-known that α-synuclein (α-syn), a key protein involved in PD, activates microglia potently, and it is also reported that α-syn exists in the peripheral system, especially in erythrocytes or red blood cells (RBC) at exceedingly high concentration. The current study focused on the possibility that RBC-derived α-syn mediates the sensitization of peripheral monocytes in PD patients.
Methods
The hyperactivation of monocytes was assessed quantitatively by measuring mRNA levels of typical inflammatory cytokines (including IL-1β, IL-6 and TNF-α) and protein levels of secreted inflammatory cytokines (including pro-inflammatory cytokines: IL-1β, IL-6, TNF-α, IL-8, IFN-γ, IL-2, and IL-12p70 and anti-inflammatory cytokines: IL-4, IL-10, and IL-13). Western blot, nanoparticle tracking analysis and electron microscopy were used to characterize RBC-derived extracellular vesicles (RBC-EVs). Inhibitors of endocytosis and leucine-rich repeat kinase 2 (LRRK2), another key protein involved in PD, were used to investigate how these two factors mediated the process of monocyte sensitization by RBC-EVs.
Results
Increased inflammatory sensitization of monocytes was observed in PD patients and PD model mice. We found that α-syn-containing RBC-EVs isolated from PD model mice or free form oligomeric α-syn induced the inflammatory sensitization of THP-1 cells, and demonstrated that endocytosis was a requirement for this pathophysiological pathway. Furthermore, the hyperactivation of THP-1 cells induced by RBC-EVs was associated with increased LRRK2 production and kinase activity. The phenomenon of inflammatory sensitization of human monocytes and increased LRRK2 were also observed by the treatment of RBC-EVs isolated from PD patients.
Conclusions
Our data provided new insight into how hyperactivation of monocytes occurs in PD patients, and identified the central role played by α-syn-containing RBC-EVs in this process.
Journal Article
Heterogeneous Ensemble Sentiment Classification Model Integrating Multi-View Features and Dynamic Weighting
2025
With the continuous growth of user reviews, identifying underlying sentiment across multi-source texts efficiently and accurately has become a significant challenge in NLP. Traditional single models in cross-domain sentiment analysis often exhibit insufficient stability, limited generalization capabilities, and sensitivity to class imbalance. Existing ensemble methods predominantly rely on static weighting or voting strategies among homogeneous models, failing to fully leverage the complementary advantages between models. To address these issues, this study proposes a heterogeneous ensemble sentiment classification model integrating multi-view features and dynamic weighting. At the feature learning layer, the model constructs three complementary base learners, a RoBERTa-FC for extracting global semantic features, a BERT-BiGRU for capturing temporal dependencies, and a TextCNN-Attention for focusing on local semantic features, thereby achieving multi-level text representation. At the decision layer, a meta-learner is used to fuse multi-view features, and dynamic uncertainty weighting and attention weighting strategies are employed to adaptively adjust outputs from different base learners. Experimental results across multiple domains demonstrate that the proposed model consistently outperforms single learners and comparison methods in terms of Accuracy, Precision, Recall, F1 Score, and Macro-AUC. On average, the ensemble model achieves a Macro-AUC of 0.9582 ± 0.023 across five datasets, with an Accuracy of 0.9423, an F1 Score of 0.9590, and a Macro-AUC of 0.9797 on the AlY_ds dataset. Moreover, in cross-dataset ranking evaluation based on equally weighted metrics, the model consistently ranks within the top two, confirming its superior cross-domain adaptability and robustness. These findings highlight the effectiveness of the proposed framework in enhancing sentiment classification performance and provide valuable insights for future research on lightweight dynamic ensembles, multilingual, and multimodal applications.
Journal Article