Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
836 result(s) for "Zorn, Holger"
Sort by:
Re‐evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs
In 2015, EFSA established a temporary tolerable daily intake (t‐TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re‐evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re‐evaluation, a pre‐established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57–73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure. This publication is linked to the following EFSA Journal article: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2023.p210401/full
Scientific Guidance for the submission of dossiers on Food Enzymes
Following a request from the European Commission, EFSA developed an updated scientific guidance to assist applicants in the preparation of applications for food enzymes. This guidance describes the scientific data to be included in applications for the authorisation of food enzymes, as well as for the extension of use for existing authorisations, in accordance with Regulation (EC) No 1331/2008 and its implementing rules. Information to be provided in applications relates to source, production and characteristics of the food enzyme, toxicological data, allergenicity and dietary exposure estimation. Source, production and characteristics of the food enzyme are first considered only for enzymes of microbial origin and subsequently for those enzymes derived from plants and for enzymes from animal sources. Finally, the data requested for toxicology, allergenicity and dietary exposure applies to all food enzymes independent of the source. On the basis of the submitted data, EFSA will assess the safety of food enzymes and conclude whether or not they present a risk to human health under the proposed conditions of use. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2021.EN-6850/full
Food manufacturing processes and technical data used in the exposure assessment of food enzymes
Food enzymes are used for technical purposes in the production of food ingredients or foods‐as‐consumed. In the European Union, the safety of a food enzyme is evaluated by EFSA on the basis of a technical dossier provided by an applicant. Dietary exposure is an integral part of the risk assessment of food enzymes. To develop exposure models specific to each food manufacturing process in which food enzymes are used, different input data are required which are then used in tandem with technical conversion factors. This allows the use levels of food enzyme to be related to food consumption data collected in dietary surveys. For each food manufacturing process, EFSA identified a list of food groups (FoodEx1 classification system) and collated technical conversion factors. To ensure a correct and uniform application of these input data in the assessment of food enzyme dossiers, stakeholders were consulted via open calls‐for‐data. In addition to publishing and updating the identified input parameters on an annual basis, single‐process‐specific calculators of the Food Enzyme Intake Models (FEIMs) have been developed. These calculators have been deposited at https://zenodo.org/ since 2018 for open access. By 2023, EFSA had compiled the input data for a total of 40 food manufacturing processes in which food enzymes are employed. In this document, the food manufacturing processes are structured, food groups classified initially in the FoodEx1 system are translated into the FoodEx2 system, and technical factors are adjusted to reflect the more detailed and standardised FoodEx2 nomenclature. The development of an integrated FEIM‐web tool using this collection of input data is carried out for a possible release in 2024. This tool will be able to estimate the exposure to the food enzyme–total organic solids (TOS) when employed in multiple food manufacturing processes.
Aroma Properties of Cocoa Fruit Pulp from Different Origins
Cocoa pulp occurs as a by-product of cocoa bean production and can be repurposed to different food applications, such as jams, fruit preparations and beverages, improving the sustainability of cocoa production, as well as the livelihoods of cocoa farmers. In this work, aroma-active compounds of fresh cocoa fruit pulps from different origins were investigated by applying aroma extract dilution analyses in combination with gas chromatography-mass spectrometry/olfactometry for identification. In total, 65 aroma-active compounds were determined in four different pulps originating from Indonesia, Vietnam, Cameroon, and Nicaragua. Vietnamese pulp showed the highest number of aroma-active regions, while Cameroonian pulp accounted for the lowest. Moreover, Cameroonian cocoa pulp showed the lowest FD factors. Overall, the odorants with the highest FD factors were trans-4,5-epoxy-(E)-decenal, 2- and 3-methylbutanoic acid, 3-(methylthio)propanal, 2-isobutyl-3-methoxypyrazine, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 4-vinyl-2-methoxyphenol, δ-decalactone, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, dodecanoic acid, and linalool. This study provides insights into the aroma composition of fresh cocoa pulp from different origins for future food applications.
Safety evaluation of the food enzyme triacylglycerol lipase from the genetically modified Saccharomyces cerevisiae strain LALL‐LI
The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) is produced with the genetically modified Saccharomyces cerevisiae strain LALL‐LI by Lallemand Inc. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism, but not from recombinant DNA. It is intended to be used in baking processes. Dietary exposure to the food enzyme–total organic solids (TOS) was estimated to be up to 0.42 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety (QPS) approach to safety assessment. Therefore, the Panel considered that toxicological tests are not needed for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Update of the risk assessment of di‐butylphthalate (DBP), butyl‐benzyl‐phthalate (BBP), bis(2‐ethylhexyl)phthalate (DEHP), di‐isononylphthalate (DINP) and di‐isodecylphthalate (DIDP) for use in food contact materials
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) was asked by the European Commission to update its 2005 risk assessments of di‐butylphthalate (DBP), butyl‐benzyl‐phthalate (BBP), bis(2‐ethylhexyl)phthalate (DEHP), di‐isononylphthalate (DINP) and di‐isodecylphthalate (DIDP), which are authorised for use in plastic food contact material (FCM). Dietary exposure estimates (mean and high (P95)) were obtained by combining literature occurrence data with consumption data from the EFSA Comprehensive Database. The highest exposure was found for DINP, ranging from 0.2 to 4.3 and from 0.4 to 7.0 μg/kg body weight (bw) per day for mean and high consumers, respectively. There was not enough information to draw conclusions on how much migration from plastic FCM contributes to dietary exposure to phthalates. The review of the toxicological data focused mainly on reproductive effects. The CEP Panel derived the same critical effects and individual tolerable daily intakes (TDIs) (mg/kg bw per day) as in 2005 for all the phthalates, i.e. reproductive effects for DBP (0.01), BBP (0.5), DEHP (0.05), and liver effects for DINP and DIDP (0.15 each). Based on a plausible common mechanism (i.e. reduction in fetal testosterone) underlying the reproductive effects of DEHP, DBP and BBP, the Panel considered it appropriate to establish a group‐TDI for these phthalates, taking DEHP as index compound as a basis for introducing relative potency factors. The Panel noted that DINP also affected fetal testosterone levels at doses around threefold higher than liver effects and therefore considered it conservative to include it within the group‐TDI which was established to be 50 μg/kg bw per day, expressed as DEHP equivalents. The aggregated dietary exposure for DBP, BBP, DEHP and DINP was estimated to be 0.9–7.2 and 1.6–11.7 μg/kg bw per day for mean and high consumers, respectively, thus contributing up to 23% of the group‐TDI in the worst‐case scenario. For DIDP, not included in the group‐TDI, dietary exposure was estimated to be always below 0.1 μg/kg bw per day and therefore far below the TDI of 150 μg/kg bw per day. This assessment covers European consumers of any age, including the most sensitive groups. Based on the limited scope of the mandate and the uncertainties identified, the Panel considered that the current assessment of the five phthalates, individually and collectively, should be on a temporary basis. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1747/full
Safety evaluation of the food enzyme d‐psicose 3‐epimerase from the genetically modified Corynebacterium glutamicum strain FIS002
This assessment addresses a food enzyme preparation consisting of the immobilised intact but non‐viable cells of the genetically modified Corynebacterium glutamicum strain FIS002 by CJ‐Tereos Sweeteners Europe SAS. The production strain produces the food enzyme d‐fructose 3‐epimerase (d‐psicose 3‐epimerase; EC 5.1.3.30). The food enzyme preparation is used in processing fructose to produce a speciality carbohydrate d‐allulose (synonym d‐psicose). Since residual amounts of total organic solids (TOS) are removed by the purification steps applied during the production of d‐allulose, dietary exposure was not calculated. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90‐day oral toxicity study in rats. The Panel identified a no observed adverse effect level (NOAEL) of 1,796 mg TOS/kg body weight (bw) per day, the highest dose tested. A search for similarity of the amino acid sequence of the enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood of such reactions to occur is low. The food enzyme preparation contains multiple copies of an antimicrobial resistance gene, which is considered a hazard. However, under the specific intended conditions of use described by the applicant, and based on the evidence showing the removal of TOS during the production of d‐allulose and the absence of recombinant DNA in the d‐allulose, the Panel concluded that the identified hazard associated with the food enzyme d‐psicose 3‐epimerase produced with the genetically modified C. glutamicum strain FIS002 will not result in a risk.
Evidence for methane production by saprotrophic fungi
Methane in the biosphere is mainly produced by prokaryotic methanogenic archaea, biomass burning, coal and oil extraction, and to a lesser extent by eukaryotic plants. Here we demonstrate that saprotrophic fungi produce methane without the involvement of methanogenic archaea. Fluorescence in situ hybridization, confocal laser-scanning microscopy and quantitative real-time PCR confirm no contribution from microbial contamination or endosymbionts. Our results suggest a common methane formation pathway in fungal cells under aerobic conditions and thus identify fungi as another source of methane in the environment. Stable carbon isotope labelling experiments reveal methionine as a precursor of methane in fungi. These findings of an aerobic fungus-derived methane formation pathway open another avenue in methane research and will further assist with current efforts in the identification of the processes involved and their ecological implications. Methane is an important anthropogenic greenhouse gas and is thought to be produced by industrial processes and prokaryotic methanogenic Archaea. In this study, the saprotrophic fungi, Basidiomycetes , is shown to produce methane in the absence of methanogenic Archaea.
Upcycling of food industry side streams by basidiomycetes for production of a vegan protein source
Purpose Novel protein sources are urgently needed to meet the increasing protein demand of a continuously growing world population. This study is focused on the production of protein rich mushroom mycelia on industrial side streams. Methods Submerged propagation of mushrooms was carried out in shake flasks which contained agro-industrial side streams as the sole carbon source. The biomass obtained was analyzed for its crude protein, ash and fat content as well as for its fatty acid and amino acid profiles. Vitamin D 2 production from ergosterol in the biomass was induced by UV-B irradiation and determined by HPLC–DAD. The share of fungal mycelium in the total biomass was determined by extraction and quantitation of ergosterol. Additionally, water and oil binding capacity (WBC and OBC) were evaluated. Results A screening of basidiomycetes grown on agro-industrial side streams indicated a fast growth of Pleurotus sapidus on apple pomace. After 4 days of cultivation, the biomass obtained from this mushroom–substrate combination contained 21% true protein in dry matter. In addition to proteins, the amounts of lipids (4%), ash (2%) and carbohydrates (74%) were quantitated. The dominating fatty and amino acids of Pleurotus   sapidus grown on apple pomace were linoleic acid and glutamic acid/glutamine, respectively. Concentrations of up to 115 µg (g dry matter) −1 vitamin D 2 were formed from ergosterol by UV-B irradiation. Ergosterol was used as a biomarker to monitor the amount of fungal content. Conclusion The nutritional value of agro-industrial side streams such as apple pomace can be upcycled by biotransformation with basidiomycetes.
Odor Characteristics of Novel Non-Canonical Terpenes
Several non-canonical, methylated terpenes have been described as products of genetically modified Escherichia coli recently, and the aroma properties of 28 odor-active methylated derivatives of prenol, isoprenol, bornane, camphene, carene, citronellol, fenchol, geraniol, limonene, linalool, terpineol, and farnesol were characterized for the first time in the current study. Twelve methylated monoterpenes exhibited a particularly intense and pleasant odor and were therefore chosen for the determination of their respective odor thresholds (OTs) in comparison to their non-methylated equivalents. In addition to the determination of OTs based on the literature value for the internal standard, (2E)-decenal, the threshold values of the compounds with individually determined OTs of the participants were calculated. This enabled a more precise identification of the OTs. Among the non-canonical terpenes, the lowest OTs in the air were found for 2-methyllinalool (flowery, 1.8 ng L−1), 2-methyl-α-fenchol (moldy, 3.6 ng L−1), 2-methylgeraniol (flowery, 5.4 ng L−1), 2-methylcitronellol (citrus-like, 7.2 ng L−1), and 4-methylgeraniol (citrus-like, 16 ng L−1). The derivatives of geraniol, linalool, and citronellol showed very pleasant odor impressions, which could make them interesting for use as flavoring agents in the flavor and fragrance industry.