Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
101 result(s) for "Zou, Junyi"
Sort by:
A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution
Nitric oxide synthase 3 (NOS3) produces the gasotransmitter nitric oxide (NO), which drives critical cellular signaling pathways by S -nitrosylating target proteins. Endogenous NOS3 resides at two distinct subcellular locations: the plasma membrane and the trans-Golgi network (TGN). However, NO generation arising from the activities of both these pools of NOS3 and its relative contribution to physiology or disease is not yet resolvable. We describe a fluorescent DNA-based probe technology, NOckout, that can be targeted either to the plasma membrane or the TGN, where it can quantitatively map the activities of endogenous NOS3 at these locations in live cells. We found that, although NOS3 at the Golgi is tenfold less active than at the plasma membrane, its activity is essential for the structural integrity of the Golgi. The newfound ability to spatially map NOS3 activity provides a platform to discover selective regulators of the distinct pools of NOS3. A pair of fluorescent DNA-based probes for nitric oxide reveals that nitric oxide synthase 3 activity in the trans-Golgi network is essential for Golgi structural integrity, despite being tenfold less active there than at the plasma membrane.
Modeling transmission of SARS-CoV-2 Omicron in China
Having adopted a dynamic zero-COVID strategy to respond to SARS-CoV-2 variants with higher transmissibility since August 2021, China is now considering whether, and for how long, this policy can remain in place. The debate has thus shifted towards the identification of mitigation strategies for minimizing disruption to the healthcare system in the case of a nationwide epidemic. To this aim, we developed an age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model of SARS-CoV-2 transmission calibrated on the initial growth phase for the 2022 Omicron outbreak in Shanghai, to project COVID-19 burden (that is, number of cases, patients requiring hospitalization and intensive care, and deaths) under hypothetical mitigation scenarios. The model also considers age-specific vaccine coverage data, vaccine efficacy against different clinical endpoints, waning of immunity, different antiviral therapies and nonpharmaceutical interventions. We find that the level of immunity induced by the March 2022 vaccination campaign would be insufficient to prevent an Omicron wave that would result in exceeding critical care capacity with a projected intensive care unit peak demand of 15.6 times the existing capacity and causing approximately 1.55 million deaths. However, we also estimate that protecting vulnerable individuals by ensuring accessibility to vaccines and antiviral therapies, and maintaining implementation of nonpharmaceutical interventions could be sufficient to prevent overwhelming the healthcare system, suggesting that these factors should be points of emphasis in future mitigation policies. Estimates from a new modeling study suggest that current levels of vaccine coverage in China are insufficient to prevent overwhelming the healthcare system, and that, if left untreated, a nationwide Omicron wave could result in up to 1.55 million deaths.
Global landscape of SARS-CoV-2 genomic surveillance and data sharing
Genomic surveillance has shaped our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. We performed a global landscape analysis on SARS-CoV-2 genomic surveillance and genomic data using a collection of country-specific data. Here, we characterize increasing circulation of the Alpha variant in early 2021, subsequently replaced by the Delta variant around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 45 countries performing a high level of routine genomic surveillance and 96 countries with a high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequencing percentage, sequencing technologies, turnaround time and completeness of released metadata across regions and income groups. A total of 37% of countries with explicit reporting on variants shared less than half of their sequences of variants of concern (VOCs) in public repositories. Our findings indicate an urgent need to increase timely and full sharing of sequences, the standardization of metadata files and support for countries with limited sequencing and bioinformatics capacity. Analyses on the global diversity of SARS-CoV-2 genomic surveillance across 118 countries and the extent of public availability of genomic data provide evidence to better inform SARS-CoV-2 surveillance policy.
Real-Time Target Detection System for Intelligent Vehicles Based on Multi-Source Data Fusion
To improve the identification accuracy of target detection for intelligent vehicles, a real-time target detection system based on the multi-source fusion method is proposed. Based on the ROS melodic software development environment and the NVIDIA Xavier hardware development platform, this system integrates sensing devices such as millimeter-wave radar and camera, and it can realize functions such as real-time target detection and tracking. At first, the image data can be processed by the You Only Look Once v5 network, which can increase the speed and accuracy of identification; secondly, the millimeter-wave radar data are processed to provide a more accurate distance and velocity of the targets. Meanwhile, in order to improve the accuracy of the system, the sensor fusion method is used. The radar point cloud is projected onto the image, then through space-time synchronization, region of interest (ROI) identification, and data association, the target-tracking information is presented. At last, field tests of the system are conducted, the results of which indicate that the system has a more accurate recognition effect and scene adaptation ability in complex scenes.
Usefulness of three-dimensional printing of superior mesenteric vessels in right hemicolon cancer surgery
The anatomy of the superior mesenteric vessels is complex, yet important, for right-sided colorectal surgery. The usefulness of three-dimensional (3D) printing of these vessels in right hemicolon cancer surgery has rarely been reported. In this prospective clinical study, 61 patients who received laparoscopic surgery for right hemicolon cancer were preoperatively randomized into 3 groups: 3D-printing (20 patients), 3D-image (19 patients), and control (22 patients) groups. Surgery duration, bleeding volume, and number of lymph node dissections were designed to be the primary end points, whereas postoperative complications, post-operative flatus recovery time, duration of hospitalization, patient satisfaction, and medical expenses were designed to be secondary end points. To reduce the influence of including different surgeons in the study, the surgical team was divided into 2 groups based on surgical experience. The duration of surgery for the 3D-printing and 3D-image groups was significantly reduced (138.4 ± 19.5 and 154.7 ± 25.9 min vs. 177.6 ± 24.4 min, P  = 0.000 and P  = 0.006), while the number of lymph node dissections for the these 2 groups was significantly increased (19.1 ± 3.8 and 17.6 ± 3.9 vs. 15.8 ± 3.0, P  = 0.001 and P  = 0.024) compared to the control group. Meanwhile, the bleeding volume for the 3D-printing group was significantly reduced compared to the control group (75.8 ± 30.4 mL vs. 120.9 ± 39.1 mL, P  = 0.000). Moreover, patients in the 3D-printing group reported increased satisfaction in terms of effective communication compared to those in the 3D-image and control groups. Medical expenses decreased by 6.74% after the use of 3D-printing technology. Our results show that 3D-printing technology could reduce the duration of surgery and total bleeding volume and increase the number of lymph node dissections. 3D-printing technology may be more helpful for novice surgeons. Trial registration : Chinese Clinical Trial Registry, ChiCTR1800017161. Registered on 15 July 2018.
EMB System Design and Clamping Force Tracking Control Research
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench.
Association between daytime napping and obesity in Chinese middle-aged and older adults
No studies have assessed the association between daytime napping and obesity in China. The study aimed to examine the association between daytime napping and obesity among Chinese middle-aged and older adults, and to evaluate the difference between the aforementioned association in men and women. Overall, 14 685 participants aged 45 years and older were included by using data from China Health and Retirement Longitudinal Study (CHARLS) in 2015. A multivariable logistic regression model was used to investigate the relationship between daytime napping and obesity after adjusting for potential confounders. Stratified analyses were performed to examine the association differences by sex. Besides, the Cochran-Armitage test for trend was used to detect if there was a significant dose-response relationship between daytime napping and obesity. The mean age of participants was 60.32, and the mean daytime napping duration was 38.97 minutes. In the sample, compared with no daytime napping group, the risks of being obese were higher in both moderate daytime napping group (1-60 minute/d) (odds ratio OR = 1.27, 95% confidence interval (CI) = 1.13-1.44) and extend long daytime napping group (>60 minute/d) (OR = 1.34, 95% CI = 1.15-1.56). In sex stratification, these significant correlations only existed in women but not in men. Compared with no daytime napping, women who napped 1-60 minute/d and over 60 minute/d were more likely to be obese (OR = 1.37, 95% CI = 1.18-1.59 and OR = 1.49, 95% CI = 1.23-1.81, respectively). Besides, the Cochran-Armitage trend test revealed that the prevalence rate of obesity increased as the daytime napping duration increased (  < 0.001). The study established the relationship between daytime napping and obesity in a general Chinese population. The association, however, was only detected among women. Furthermore, there was a dose-response relationship between daytime napping and obesity among women. Future studies may verify this association by using a longitudinal design and focus on the mechanisms behind such association.
Hydraulic Integrated Interconnected Regenerative Suspension: Modeling and Characteristics Analysis
A novel suspension system, the hydraulic integrated interconnected regenerative suspension (HIIRS), has been proposed recently. This paper demonstrates the vibration and energy harvesting characteristics of the HIIRS. The HIIRS model is established as a set of coupled, frequency-dependent equations with the hydraulic impedance method. The mechanical–fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. By integrating the HIIRS into a half car model, its free and forced vibration analyses are conducted and compared with an equivalent traditional off-road vehicle. Results show that the natural frequency and the damping ratio of the HIIRS-equipped vehicle are within a proper range of a normal off-road vehicle. The root mean square values of the bounce and roll acceleration of the HIIRS system are, respectively, 64.62 and 11.21% lower than that of a traditional suspension. The average energy harvesting power are 186.93, 417.40 and 655.90 W at the speeds of 36, 72 and 108 km/h for an off-road vehicle on a Class-C road. The results indicate that the HIIRS system can significantly enhance the vehicle dynamics and harvest the vibration energy simultaneously.
The risk of mpox importation and subsequent outbreak potential in Chinese mainland: a retrospective statistical modelling study
Background The 2022–2023 mpox (monkeypox) outbreak has spread rapidly across multiple countries in the non-endemic region, mainly among men who have sex with men (MSM). In this study, we aimed to evaluate mpox’s importation risk, border screening effectiveness and the risk of local outbreak in Chinese mainland. Methods We estimated the risk of mpox importation in Chinese mainland from April 14 to September 11, 2022 using the number of reported mpox cases during this multi-country outbreak from Global.health and the international air-travel data from Official Aviation Guide. We constructed a probabilistic model to simulate the effectiveness of a border screening scenario during the mpox outbreak and a hypothetical scenario with less stringent quarantine requirement. And we further evaluated the mpox outbreak potential given that undetected mpox infections were introduced into men who have sex with men, considering different transmissibility, population immunity and population activity. Results We found that the reduced international air-travel volume and stringent border entry policy decreased about 94% and 69% mpox importations respectively. Under the quarantine policy, 15–19% of imported infections would remain undetected. Once a case of mpox is introduced into active MSM population with almost no population immunity, the risk of triggering local transmission is estimated at 42%, and would rise to > 95% with over six cases. Conclusions Our study demonstrates that the reduced international air-travel volume and stringent border entry policy during the COVID-19 pandemic reduced mpox importations prominently. However, the risk could be substantially higher with the recovery of air-travel volume to pre-pandemic level. Mpox could emerge as a public health threat for Chinese mainland given its large MSM community. Graphical Abstract
Design, Modeling, and Analysis of a Novel Hydraulic Energy-Regenerative Shock Absorber for Vehicle Suspension
To reduce energy consumption or improve energy efficiency, the regenerative devices recently have drawn the public’s eyes. In this paper, a novel hydraulic energy-regenerative shock absorber (HERSA) is developed for vehicle suspension to regenerate the vibration energy which is dissipated by conventional viscous dampers into heat waste. At first, the schematic of HERSA is presented and a mathematic model is developed to describe the characteristic of HERSA. Then the parametric sensitivity analysis of the vibration energy is expounded, and the ranking of their influences is k1≫m2>m1>k2≈cs. Besides, a parametric study of HERSA is adopted to research the influences of the key parameters on the characteristic of HERSA. Moreover, an optimization of HERSA is carried out to regenerate more power as far as possible without devitalizing the damping characteristic. To make the optimization results more close to the actual condition, the displacement data of the shock absorber in the road test is selected as the excitation in the optimization. The results show that the RMS of regenerated energy is up to 107.94 W under the actual excitation. Moreover it indicates that the HERSA can improve its performance through the damping control.