Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
48 result(s) for "Zou, Xiling"
Sort by:
Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.)
Rapeseed ( Brassica napus L.) is an important oilseed crop in the world. Its productivity is significantly influenced by numerous abiotic stresses, including cold stress (CS). Consequently, enhancement in CS tolerance is becoming an important area for agricultural investigation and crop improvement. Therefore, the current study aimed to identify the stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the CS responses and tolerance mechanisms in the cold-tolerant (C18) and cold-sensitive (C6) rapeseed varieties. Based on the metabolome analysis, 31 differentially accumulated metabolites (DAMs) were identified between different comparisons of both varieties at the same time points. From the transcriptome analysis, 2,845, 3,358, and 2,819 differentially expressed genes (DEGs) were detected from the comparison of C6-0 vs. C18-0, C6-1 vs. C18-1, and C6-7 vs. C18-7. By combining the transcriptome and metabolome data sets, we found that numerous DAMs were strongly correlated with several differentially expressed genes (DEGs). A functional enrichment analysis of the DAMs and the correlated DEGs specified that most DEGs and DAMs were mainly enriched in diverse carbohydrates and amino acid metabolisms. Among them, starch and sucrose metabolism and phenylalanine metabolism were significantly enriched and played a vital role in the CS adaption of rapeseed. Six candidate genes were selected from the two pathways for controlling the adaption to low temperature. In a further validation, the T-DNA insertion mutants of their Arabidopsis homologous, including 4cl3, cel5, fruct4, ugp1, axs1 , and bam2/9 , were characterized and six lines differed significantly in levels of freezing tolerance. The outcome of the current study provided new prospects for the understanding of the molecular basis of CS responses and tolerance mechanisms in rapeseed and present a set of candidate genes for use in improving CS adaptability in the same plant.
Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings
Cold stress disturbs numerous physiological and biochemical processes, restricting plant growth and productivity. In the current study, the protective role of exogenous serotonin in alleviating cold stress was investigated in rapeseed (Brassica napus L.) seedlings. The rapeseed seedlings were pretreated with different concentrations (0, 0.01, 0.02, 0.03, and 0.04 g L− 1) of serotonin solution and then were exposed to cold stress (4, 2, 0, and − 2 °C). The results indicated that the pretreatment of serotonin significantly increased the survival rate. Mainly, 0.03 g L− 1 of serotonin increased the survival rate by 75% compared to control conditions. The physiological and biochemical indexes and the expression of cold tolerance-related genes were analyzed in the seedlings pretreated with 0.03 g L− 1 of serotonin. The contents of proline (PRO), soluble sugar (SS), and soluble protein (SP); and the activities of antioxidant defense such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were significantly increased by exogenous serotonin under cold stress. Supplemented serotonin significantly increased the expression of SOD, COR6.6, COR15, and CBFs genes under cold stress.Overall, our results indicate that the optimal concentration (0.03 g L− 1) of exogenous serotonin maintained the osmotic potential balance in cells under cold stress by increasing the content of osmotic regulatory substances (SS, SP, and PRO), improving the scavenging ability of reactive oxygen species (ROS), increasing the antioxidant enzyme activities (CAT, POD, and SOD) and the transcriptional level of cold stress-related genes, helping rapeseed seedlings to cope with the cold stress. Therefore, serotonin-induced regulatory interactions between physiological and biochemical processes and the elevated expression of stress-associated genes may be a beneficial technique for cold stress tolerance in plants.
Transcriptome Analysis of Canola (Brassica napus) under Salt Stress at the Germination Stage
Canola (Brassica napus) is one of the most important oil crops in the world. However, its yield has been constrained by salt stress. In this study, transcriptome profiles were explored using Digital Gene Expression (DGE) at 0, 3, 12 and 24 hours after H2O (control) and NaCl treatments on B. napus roots at the germination stage. Comparisons of gene-expression between the control and the treatment were conducted after tag-mapping to the sequenced Brassica rapa genome. The differentially expressed genes during the time course of salt stress were focused on, and 163 genes were identified to be differentially expressed at all the time points. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of the genes were involved in proline metabolism, inositol metabolism, carbohydrate metabolic processes and oxidation-reduction processes and may play vital roles in the salt-stress response at the germination stage. Thus, this study provides new candidate salt stress responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance.
Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings
Cold stress (CS) severely affects several physiological, biochemical, and molecular mechanisms and limits the growth and production of rapeseed ( Brassica napus L.). Trehalose (Tre) acts as a growth modulator, which is extensively used to improve the tolerance to multiple plant stresses. Further, Tre also serves as an external force in inducing plant signaling molecules, regulating the expression of stress-responsive genes, and enhancing the CS tolerance in plants. Nevertheless, the importance of exogenous Tre in improving the CS tolerance in rapeseed is still unclear. Therefore, the current study was designed to get mechanistic insights into Tre-mediated CS tolerance in rapeseed seedlings. To explore the Tre role, we designed four treatments [control (CK), CK + 20 mM L –1 Tre, Cold, and Cold + 20 mM L –1 Tre] and three CS conditions (4, 0, and −4°C). The results showed that Tre treatments significantly mitigated the adverse effects of CS on the seedlings and increased the survival rate of Tre-treated seedlings under CS conditions. The exogenous Tre dramatically increased the contents of osmoprotectants, including the soluble sugar (SS), soluble protein (SP), and proline (Pro), and the activities of antioxidant enzymes, such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were also increased under CS conditions. Additionally, Tre decreased the malondialdehyde (MDA) contents to protect the rapeseed seedlings. Moreover, Tre also remarkably augmented the expression levels of antioxidant genes ( CAT12, POD34 , and FSD7 ), CS-responsive marker genes ( CBF1, CBF2, CBF4, COR6.6, COR15, COR25, COL1 , and KIN1 ), and Tre-biosynthesis genes ( TPS4, TPS8 , and TPS9 ). Briefly, exogenous Tre not only regulates the antioxidant and osmotic balance, but it also significantly participates in Tre metabolism and signaling network to improve the CS tolerance in rapeseed. Thus, Tre-induced supervisory connections between physiological or/and biochemical attributes provide information to dissect the mechanisms of Tre-mediated CS tolerance.
Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L
Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed ( Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis -elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.
Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed (Brassica napus L.) under Different Hormones and Abiotic Stress Conditions
Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome, including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes from rapeseed and other closely related plant species were clustered into three groups based on the binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes displayed a relatively well-maintained exon–intron and motif configuration within the same group. Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted, targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2, and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D structures discovered comparable conserved BnSOD protein structures. In short, our findings deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed breeding programs.
Inositol Improves Cold Tolerance Through Inhibiting CBL1 and Increasing Ca2+ Influx in Rapeseed (Brassica napus L.)
Rapeseed ( Brassica napus L.) is an important oilseed crop worldwide. However, its productivity is significantly affected by various abiotic stresses, including cold stress. Among various stresses, cold stress is an important abiotic factor affecting plant growth, yield, and quality. The calcium channels are regarded as key pathways affecting cold tolerance in plants. Thus, improvement in cold tolerance is of great significance for crop improvement. The current study was designed to examine the beneficial role of exogenous inositol in improving cold stress tolerance in rapeseed. From the RNA-seq results, we identified 35 differently expressed genes encoding different inositol enzymes. The results show that inositol (a cyclic polyol) positively regulated cold tolerance by increasing calcium ion (Ca 2+ ) influx in rapeseed. Furthermore, we found that the expression of calcineurin B-like ( CBL1 ) gene was inhibited by inositol. On the other hand, overexpressed plant mediated the Ca 2+ flux under cold stress suggesting the key role of inositol-Ca 2+ pathway in cold tolerance. Moreover, the overexpression of BnCBL1-2 in Arabidopsis represented that transgenic plants mediated the Ca 2+ flux highlighting the vital role of the inositol-Ca 2+ pathway in conferring cold stress. Our study provides new insights into rapeseed cold tolerance mechanism and introduces a feasible method to improve the cold tolerance of rapeseed quickly.
A Comparison of Screening Methods to Identify Waterlogging Tolerance in the Field in Brassica napus L. during Plant Ontogeny
Waterlogging tolerance is typically evaluated at a specific development stage, with an implicit assumption that differences in waterlogging tolerance expressed in these systems will result in improved yield performance in fields. It is necessary to examine these criteria in fields. In the present study, three experiments were conducted to screen waterlogging tolerance in 25 rapeseed (Brassica napus L.) varieties at different developmental stages, such as seedling establishment stage and seedling stage at controlled environment, and maturity stage in the fields. The assessments for physiological parameters at three growth stages suggest that there were difference of waterlogging tolerance at all the development stages, providing an important basis for further development of breeding more tolerant materials. The results indicated that flash waterlogging restricts plant growth and growth is still restored after removal of the stress. Correlation analysis between waterlogging tolerance coefficient (WTC) of yield and other traits revealed that there was consistency in waterlogging tolerance of the genotypes until maturity, and good tolerance at seedling establishment stage and seedling stage can guarantee tolerance in later stages. The waterlogging-tolerant plants could be selected using some specific traits at any stage, and selections would be more effective at the seedling establishment stage. Thus, our study provides a method for screening waterlogging tolerance, which would enable the suitable basis for initial selection of a large number of germplasm or breeding populations for waterlogging tolerance and help for verifying their potential utility in crop-improvement.
Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L
Brassica napus L. ( B. napus ) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus . Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus .