Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
70
result(s) for
"Zuercher, William J"
Sort by:
CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer
2019
Tumor-associated myeloid cells regulate tumor growth and metastasis, and their accumulation is a negative prognostic factor for breast cancer. Here we find calcium/calmodulin-dependent kinase kinase (CaMKK2) to be highly expressed within intratumoral myeloid cells in mouse models of breast cancer, and demonstrate that its inhibition within myeloid cells suppresses tumor growth by increasing intratumoral accumulation of effector CD8
+
T cells and immune-stimulatory myeloid subsets. Tumor-associated macrophages (TAMs) isolated from
Camkk2
−/−
mice expressed higher levels of chemokines involved in the recruitment of effector T cells compared to WT. Similarly, in vitro generated
Camkk2
−/−
macrophages recruit more T cells, and have a reduced capability to suppress T cell proliferation, compared to WT. Treatment with CaMKK2 inhibitors blocks tumor growth in a CD8
+
T cell-dependent manner, and facilitates a favorable reprogramming of the immune cell microenvironment. These data, credential CaMKK2 as a myeloid-selective checkpoint, the inhibition of which may have utility in the immunotherapy of breast cancer.
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) is highly expressed in several cancers. Here the authors investigate the role of CaMKK2 expression in the tumour microenvironment and show that CaMKK2 expression in tumour-associated macrophages promotes tumour growth by suppressing T cell anti-tumour activity.
Journal Article
Profile of the GSK Published Protein Kinase Inhibitor Set Across ATP-Dependent and-Independent Luciferases: Implications for Reporter-Gene Assays
by
MacArthur, Ryan
,
Drewry, David H.
,
Guha, Rajarshi
in
Adenosine Triphosphate - metabolism
,
Animals
,
Aromatic compounds
2013
A library of 367 protein kinase inhibitors, the GSK Published Kinase Inhibitor Set (PKIS), which has been annotated for protein kinase family activity and is available for public screening efforts, was assayed against the commonly used luciferase reporter enzymes from the firefly, Photinus pyralis (FLuc) and marine sea pansy, Renilla reniformis (RLuc). A total of 22 compounds (∼6% of the library) were found to inhibit FLuc with 10 compounds showing potencies ≤1 µM. Only two compounds were found to inhibit RLuc, and these showed relatively weak potency values (∼10 µM). An inhibitor series of the VEGFR2/TIE2 protein kinase family containing either an aryl oxazole or benzimidazole-urea core illustrate the different structure activity relationship profiles FLuc inhibitors can display for kinase inhibitor chemotypes. Several FLuc inhibitors were broadly active toward the tyrosine kinase and CDK families. These data should aid in interpreting the results derived from screens employing the GSK PKIS in cell-based assays using the FLuc reporter. The study also underscores the general need for strategies such as the use of orthogonal reporters to identify kinase or non-kinase mediated cellular responses.
Journal Article
Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation
by
Michalek, Ryan D
,
Giguere, Vincent
,
Kazmin, Dmitri
in
adenosine triphosphate
,
Animals
,
biochemical pathways
2011
Stimulation of resting CD4+ T lymphocytes leads to rapid proliferation and differentiation into effector (Teff) or inducible regulatory (Treg) subsets with specific functions to promote or suppress immunity. Importantly, Teff and Treg use distinct metabolic programs to support subset specification, survival, and function. Here, we describe that the orphan nuclear receptor estrogen-related receptor-α (ERRα) regulates metabolic pathways critical for Teff. Resting CD4+ T cells expressed low levels of ERRα protein that increased on activation. ERRα deficiency reduced activated T-cell numbers in vivo and cytokine production in vitro but did not seem to modulate immunity through inhibition of activating signals or viability. Rather, ERRα broadly affected metabolic gene expression and glucose metabolism essential for Teff. In particular, up-regulation of Glut1 protein, glucose uptake, and mitochondrial processes were suppressed in activated ERRα–/– T cells and T cells treated with two chemically independent ERRα inhibitors or by shRNAi. Acute ERRα inhibition also blocked T-cell growth and proliferation. This defect appeared as a result of inadequate glucose metabolism, because provision of lipids, but not increased glucose uptake or pyruvate, rescued ATP levels and cell division. Additionally, we have shown that Treg requires lipid oxidation, whereas Teff uses glucose metabolism, and lipid addition selectively restored Treg—but not Teff—generation after acute ERRα inhibition. Furthermore, in vivo inhibition of ERRα reduced T-cell proliferation and Teff generation in both immunization and experimental autoimmune encephalomyelitis models. Thus, ERRα is a selective transcriptional regulator of Teff metabolism that may provide a metabolic means to modulate immunity.
Journal Article
In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds
by
Drewry, David H.
,
Scott, John W.
,
Wells, Carrow I.
in
Androgens
,
Animals
,
Benzimidazoles - chemistry
2020
The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.
Journal Article
Identification of drug modifiers for RYR1-related myopathy using a multi-species discovery pipeline
by
Volpatti, Jonathan R
,
Brennan, Stephanie
,
Dowling, James J
in
Analysis
,
Animal experimentation
,
Animal models
2020
Ryanodine receptor type I-related myopathies (RYR1-RMs) are a common group of childhood muscle diseases associated with severe disabilities and early mortality for which there are no available treatments. The goal of this study is to identify new therapeutic targets for RYR1-RMs. To accomplish this, we developed a discovery pipeline using nematode, zebrafish, and mammalian cell models. We first performed large-scale drug screens in C. elegans which uncovered 74 hits. Targeted testing in zebrafish yielded positive results for two p38 inhibitors. Using mouse myotubes, we found that either pharmacological inhibition or siRNA silencing of p38 impaired caffeine-induced Ca 2+ release from wild type cells while promoting intracellular Ca 2+ release in Ryr1 knockout cells. Lastly, we demonstrated that p38 inhibition blunts the aberrant temperature-dependent increase in resting Ca 2+ in myotubes from an RYR1-RM mouse model. This unique platform for RYR1-RM therapy development is potentially applicable to a broad range of neuromuscular disorders. Muscle cells have storage compartments stuffed full of calcium, which they release to trigger a contraction. This process depends on a channel-shaped protein called the ryanodine receptor, or RYR1 for short. When RYR1 is activated, it releases calcium from storage, which floods the muscle cell. Mutations in the gene that codes for RYR1 in humans cause a group of rare diseases called RYR1-related myopathies. The mutations change calcium release in muscle cells, which can make movement difficult, and make it hard for people to breathe. At the moment, RYR1 myopathies have no treatment. It is possible that repurposing existing drugs could benefit people with RYR1-related myopathies, but trialing treatments takes time. The fastest and cheapest way to test whether compounds might be effective is to try them on very simple animals, like nematode worms. But even though worms and humans share certain genes, treatments that work for worms do not always work for humans. Luckily, it is sometimes possible to test whether compounds might be effective by trying them out on complex mammals, like mice. Unfortunately, these experiments are slow and expensive. A compromise involves testing on animals such as zebrafish. So far, none of these methods has been successful in discovering treatments for RYR1-related myopathies. To maximize the strengths of each animal model, Volpatti et al. combined them, developing a fast and powerful way to test new drugs. The first step is an automated screening process that trials thousands of chemicals on nematode worms. This takes just two weeks. The second step is to group the best treatments according to their chemical similarities and test them again in zebrafish. This takes a month. The third and final stage is to test promising chemicals from the zebrafish in mouse muscle cells. Of the thousands of compounds tested here, one group of chemicals stood out – treatments that block the activity of a protein called p38. Volpatti et al. found that blocking the p38 protein, either with drugs or by inactivating the gene that codes for it, changed muscle calcium release. This suggests p38 blockers may have potential as a treatment for RYR1-related myopathies in mammals. Using three types of animal to test new drugs maximizes the benefits of each model. This type of pipeline could identify new treatments, not just for RYR1-related myopathies, but for other diseases that involve genes or proteins that are similar across species. For RYR1-related myopathies specifically, the next step is to test p38 blocking treatments in mice. This could reveal whether the treatments have the potential to improve symptoms.
Journal Article
Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni
by
Suzuki, Brian M.
,
Drewry, David H.
,
Caffrey, Conor R.
in
Adenosine Triphosphate
,
Animals
,
Benzimidazoles
2016
Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease of poverty in developing countries. Praziquantel is employed for treatment and disease control. However, its efficacy spectrum is incomplete (less active or inactive against immature stages of the parasite) and there is a concern of drug resistance. Thus, there is a need to identify new drugs and drug targets.
We show that RNA interference (RNAi) of the Schistosoma mansoni ortholog of human polo-like kinase (huPLK)1 elicits a deleterious phenotypic alteration in post-infective larvae (schistosomula or somules). Phenotypic screening and analysis of schistosomula and adult S. mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-schistosomals. Among these was a GlaxoSmithKline (GSK) benzimidazole thiophene inhibitor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We then obtained GSKs Published Kinase Inhibitor Sets (PKIS) 1 and 2, and phenotypically screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors. Computational analysis of controls and PLK1 inhibitor-treated populations of somules demonstrated a distinctive phenotype distribution. Using principal component analysis (PCA), the phenotypes exhibited by these populations were mapped, visualized and analyzed through projection to a low-dimensional space. The phenotype distribution was found to have a distinct shape and topology, which could be elicited using cluster analysis. A structure-activity relationship (SAR) was identified for the benzimidazole thiophenes that held for both somules and adult parasites. The most potent inhibitors produced marked phenotypic alterations at 1-2 μM within 1 h. Among these were compounds previously characterized as potent inhibitors of huPLK1 in cell assays.
The reverse genetic and chemical SAR data support a continued investigation of SmPLK1 as a possible drug target and/or the prosecution of the benzimidazole thiophene chemotype as a source of novel anti-schistosomals.
Journal Article
New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin I–Interacting Kinase (TNNi3K)
by
Asquith, Christopher R. M.
,
Zuercher, William J.
,
Laitinen, Tuomo
in
4-anilino-quinazolines
,
Aniline Compounds - pharmacology
,
cardiac troponin I–interacting kinase (TNNi3K)
2020
We report the synthesis of several related 4-anilinoquinazolines as inhibitors of cardiac troponin I–interacting kinase (TNNi3K). These close structural analogs of 3-((6,7-dimethoxyquinazolin-4-yl)amino)-4-(dimethylamino)-N-methylbenzenesulfonamide (GSK114) provide new understanding of structure–activity relationships between the 4-anilinoquinazoline scaffold and TNNi3K inhibition. Through a small focused library of inhibitors, we observed that the N-methylbenzenesulfonamide was driving the potency in addition to the more traditional quinazoline hinge-binding motif. We also identified a compound devoid of TNNi3K kinase activity due to the addition of a methyl group in the hinge binding region. This compound could serve as a negative control in the study of TNNi3K biology. Small molecule crystal structures of several quinazolines have been solved, supporting observations made about overall conformation and TNNi3K inhibition.
Journal Article
Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK)
by
Asquith, Christopher R. M.
,
Bennett, James M.
,
Pickett, Julie E.
in
1-aminobenzotriazole (abt)
,
Androgens
,
Binding sites
2019
SGC-GAK-1 (1) is a potent, selective, cell-active chemical probe for cyclin G-associated kinase (GAK). However, 1 was rapidly metabolized in mouse liver microsomes by cytochrome P450-mediated oxidation, displaying rapid clearance in liver microsomes and in mice, which limited its utility in in vivo studies. Chemical modifications of 1 that improved metabolic stability, generally resulted in decreased GAK potency. The best analog in terms of GAK activity in cells was 6-bromo-N-(1H-indazol-6-yl)quinolin-4-amine (35) (IC50 = 1.4 μM), showing improved stability in liver microsomes while still maintaining a narrow spectrum activity across the kinome. As an alternative to scaffold modifications we also explored the use of the broad-spectrum cytochrome P450 inhibitor 1-aminobenzotriazole (ABT) to decrease intrinsic clearance of aminoquinoline GAK inhibitors. Taken together, these approaches point towards the development of an in vivo chemical probe for the dark kinase GAK.
Journal Article
1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors
2018
We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.
Journal Article
Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations
2017
The human genome encodes two active Vaccinia-related protein kinases (VRK), VRK1 and VRK2. These proteins have been implicated in a number of cellular processes and linked to a variety of tumors. However, understanding the cellular role of VRKs and establishing their potential use as targets for therapeutic intervention has been limited by the lack of tool compounds that can specifically modulate the activity of these kinases in cells. Here we identified BI-D1870, a dihydropteridine inhibitor of RSK kinases, as a promising starting point for the development of chemical probes targeting the active VRKs. We solved co-crystal structures of both VRK1 and VRK2 bound to BI-D1870 and of VRK1 bound to two broad-spectrum inhibitors. These structures revealed that both VRKs can adopt a P-loop folded conformation, which is stabilized by different mechanisms on each protein. Based on these structures, we suggest modifications to the dihydropteridine scaffold that can be explored to produce potent and specific inhibitors towards VRK1 and VRK2.
Journal Article