Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Zuo Xiaobing"
Sort by:
A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites
Lithium–sulfur batteries are attractive alternatives to lithium-ion batteries because of their high theoretical specific energy and natural abundance of sulfur. However, the practical specific energy and cycle life of Li–S pouch cells are significantly limited by the use of thin sulfur electrodes, flooded electrolytes and Li metal degradation. Here we propose a cathode design concept to achieve good Li–S pouch cell performances. The cathode is composed of uniformly embedded ZnS nanoparticles and Co–N–C single-atom catalyst to form double-end binding sites inside a highly oriented macroporous host, which can effectively immobilize and catalytically convert polysulfide intermediates during cycling, thus eliminating the shuttle effect and lithium metal corrosion. The ordered macropores enhance ionic transport under high sulfur loading by forming sufficient triple-phase boundaries between catalyst, conductive support and electrolyte. This design prevents the formation of inactive sulfur (dead sulfur). Our cathode structure shows improved performances in a pouch cell configuration under high sulfur loading and lean electrolyte operation. A 1-A-h-level pouch cell with only 100% lithium excess can deliver a cell specific energy of >300 W h kg−1 with a Coulombic efficiency >95% for 80 cycles.The shuttling effect in Li–S batteries can be drastically suppressed by using a single-atom Co catalyst and polar ZnS nanoparticles embedded in a macroporous conductive matrix as a cathode. Using this strategy, Li–S pouch cells show stable cycling and high energy performances.
Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures
The emergence of inorganic–organic hybrid perovskites, a unique class of solution-processable crystalline semiconductors, provides new opportunities for large-area, low-cost and colour-saturated light-emitting diodes (LEDs) ideal for display and solid-state lighting applications1. However, the performance of blue perovskite LEDs (PeLEDs)2–11 is far inferior to that of their near-infrared, red and green counterparts12–19, strongly limiting the practicality of the PeLED technology. Here, we demonstrate blue PeLEDs emitting at 483 nm with colour coordinates of (0.094, 0.184) and operating with a peak external quantum efficiency of up to 9.5% at a luminance of 54 cd m–2. The devices have a T50 lifetime of 250 s for an initial brightness of 100 cd m–2. The efficient blue electroluminescence originates from a structure of quantum-confined perovskite nanoparticles embedded within quasi-two-dimensional phases with higher bandgaps, prepared by an antisolvent processing scheme. Our work paves the way towards high-performance PeLEDs in the blue region.
Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs
To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs’ folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg 2+ -dependent, furthermore, the Mg 2+ -dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg 2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg 2+ , and tolerate mutations at key tertiary motifs at high Mg 2+ , which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs. Exoribonuclease-resistant RNAs (xrRNAs) are RNA elements that block the exoribonucleolytic degradation of RNA. Here the authors show how a long-range pseudoknot length modulates the Mg 2+ -dependence of flaviviral xrRNA’s folding, conformational dynamics and Xrn1 resistance.
Katanin spiral and ring structures shed light on power stroke for microtubule severing
Using a combination of crystallography, SAXS and cryo-EM, the katanin hexamer is observed in spiral or ring arrangements, suggesting a mechanism to generate the power stroke to severe microtubules. Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations. The structures reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to microtubule-severing enzymes and critical for their function. The reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes interprotomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.
Structural mechanisms for binding and activation of a contact-quenched fluorophore by RhoBAST
The fluorescent light-up aptamer RhoBAST, which binds and activates the fluorophore–quencher conjugate tetramethylrhodamine-dinitroaniline with high affinity, super high brightness, remarkable photostability, and fast exchange kinetics, exhibits excellent performance in super-resolution RNA imaging. Here we determine the co-crystal structure of RhoBAST in complex with tetramethylrhodamine-dinitroaniline to elucidate the molecular basis for ligand binding and fluorescence activation. The structure exhibits an asymmetric “A”-like architecture for RhoBAST with a semi-open binding pocket harboring the xanthene of tetramethylrhodamine at the tip, while the dinitroaniline quencher stacks over the phenyl of tetramethylrhodamine instead of being fully released. Molecular dynamics simulations show highly heterogeneous conformational ensembles with the contact-but-unstacked fluorophore–quencher conformation for both free and bound tetramethylrhodamine-dinitroaniline being predominant. The simulations also show that, upon RNA binding, the fraction of xanthene-dinitroaniline stacked conformation significantly decreases in free tetramethylrhodamine-dinitroaniline. This highlights the importance of releasing dinitroaniline from xanthene tetramethylrhodamine to unquench the RhoBAST–tetramethylrhodamine-dinitroaniline complex. Using SAXS and ITC, we characterized the magnesium dependency of the folding and binding mode of RhoBAST in solution and indicated its strong structural robustness. The structures and binding modes of relevant fluorescent light-up aptamers are compared, providing mechanistic insights for rational design and optimization of this important fluorescent light-up aptamer-ligand system. FLAPs have recently emerged as RNA counterparts to fluorescent proteins. Here, the authors determine the crystal structure of a FLAP called RhoBAST in complex with its ligand TMR-DN and reveal the mechanisms for binding and activation.
Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads.
Folded network and structural transition in molten tin
The fundamental relationships between the structure and properties of liquids are far from being well understood. For instance, the structural origins of many liquid anomalies still remain unclear, but liquid-liquid transitions (LLT) are believed to hold a key. However, experimental demonstrations of LLTs have been rather challenging. Here, we report experimental and theoretical evidence of a second-order-like LLT in molten tin, one which favors a percolating covalent bond network at high temperatures. The observed structural transition originates from the fluctuating metallic/covalent behavior of atomic bonding, and consequently a new paradigm of liquid structure emerges. The liquid structure, described in the form of a folded network, bridges two well-established structural models for disordered systems, i.e., the random packing of hard-spheres and a continuous random network, offering a large structural midground for liquids and glasses. Our findings provide an unparalleled physical picture of the atomic arrangement for a plethora of liquids, shedding light on the thermodynamic and dynamic anomalies of liquids but also entailing far-reaching implications for studying liquid polyamorphism and dynamical transitions in liquids. Unraveling the structural origin of liquid anomalies remains a challenging topic. Xu et al. propose a folded-network structural model for molten tin and provide insights into the observed second-order-like structural transition.
Two-way tuning of structural order in metallic glasses
Metallic glasses are expected to have quite tunable structures in their configuration space, without the strict constraints of a well-defined crystalline symmetry and large energy barriers separating different states in crystals. However, effectively modulating the structure of metallic glasses is rather difficult. Here, using complementary in situ synchrotron x-ray techniques, we reveal thermal-driven structural ordering in a Ce 65 Al 10 Co 25 metallic glass, and a reverse disordering process via a pressure-induced rejuvenation between two states with distinct structural order characteristics. Studies on other metallic glass samples with different compositions also show similar phenomena. Our findings demonstrate the feasibility of two-way structural tuning states in terms of their dramatic ordering and disordering far beyond the nearest-neighbor shells with the combination of temperature and pressure, extending accessible states of metallic glasses to unexplored configuration spaces. While metallic glasses are expected to have tunable structures, these have rarely been demonstrated. Here, the authors combine temperature and pressure to show a two-way structural tuning in rare earth-based metallic glasses beyond the nearest-neighbor atomic shells.
Structural and dynamic mechanisms for coupled folding and tRNA recognition of a translational T-box riboswitch
T-box riboswitches are unique riboregulators where gene regulation is mediated through interactions between two highly structured RNAs. Despite extensive structural insights, how RNA-RNA interactions drive the folding and structural transitions of T-box to achieve functional conformations remains unclear. Here, by combining SAXS, single-molecule FRET and computational modeling, we elaborate the folding energy landscape of a translational T-box aptamer consisting of stems I, II and IIA/B, which Mg 2+ -induced global folding and tRNA binding are cooperatively coupled. smFRET measurements reveal that high Mg 2+ stabilizes IIA/B and its stacking on II, which drives the pre-docking of I and II into a competent conformation, subsequent tRNA binding promotes docking of I and II to form a high-affinity tRNA binding groove, of which the essentiality of IIA/B and S-turn in II is substantiated with mutational analysis. We highlight a delicate balance among Mg 2+ , the intra- and intermolecular RNA-RNA interactions in modulating RNA folding and function. T-box riboswitches are RNA-based gene regulators, composed of highly structured noncoding RNAs: the T-box and a tRNA ligand. Here, the authors assess the folding of a translational T-box aptamer and dissect the role of Mg 2+ , intra- and intermolecular RNA-RNA interactions in modulating its folding and function.
The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf
Enteroviruses initiate genomic replication via a highly conserved mechanism that is controlled by an RNA platform, also known as the 5’ cloverleaf (5’CL). Here, we present a biophysical analysis of the 5’CL conformation of three enterovirus serotypes under various ionic conditions, utilizing CD spectroscopy, size-exclusion chromatography, and small-angle X-ray scattering. In general, a tendency toward a smaller monomeric hydrodynamic radius in the presence of salts was observed, but the exact structural signature of each 5’CL varied depending upon the serotype. Rhinovirus B14 (RVB14) exhibited at least two monomeric conformations and a low propensity for dimerization, while poliovirus 1 (PV1) showed a high propensity for dimerization, which was enhanced by the presence of salts. Enterovirus D70 was observed to be somewhat intermediate, with primarily a monomeric structure, but possessing some potential for dimerization. The equilibrium between the two monomeric and the dimeric conformations is also discussed. These results indicate that the 5’CL conformation may be more complex than the current literature suggests, thus underscoring the need for a combined crystal and solution approach for the accurate representation of the 5’CL conformation, and the conformation of other RNA structural elements, under native conditions.