Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "de Atauri, Pedro"
Sort by:
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.
p13CMFA: Parsimonious 13C metabolic flux analysis
Deciphering the mechanisms of regulation of metabolic networks subjected to perturbations, including disease states and drug-induced stress, relies on tracing metabolic fluxes. One of the most informative data to predict metabolic fluxes are 13C based metabolomics, which provide information about how carbons are redistributed along central carbon metabolism. Such data can be integrated using 13C Metabolic Flux Analysis (13C MFA) to provide quantitative metabolic maps of flux distributions. However, 13C MFA might be unable to reduce the solution space towards a unique solution either in large metabolic networks or when small sets of measurements are integrated. Here we present parsimonious 13C MFA (p13CMFA), an approach that runs a secondary optimization in the 13C MFA solution space to identify the solution that minimizes the total reaction flux. Furthermore, flux minimization can be weighted by gene expression measurements allowing seamless integration of gene expression data with 13C data. As proof of concept, we demonstrate how p13CMFA can be used to estimate intracellular flux distributions from 13C measurements and transcriptomics data. We have implemented p13CMFA in Iso2Flux, our in-house developed isotopic steady-state 13C MFA software. The source code is freely available on GitHub (https://github.com/cfoguet/iso2flux/releases/tag/0.7.2).
From correlation to causation: analysis of metabolomics data using systems biology approaches
IntroductionMetabolomics is a well-established tool in systems biology, especially in the top–down approach. Metabolomics experiments often results in discovery studies that provide intriguing biological hypotheses but rarely offer mechanistic explanation of such findings. In this light, the interpretation of metabolomics data can be boosted by deploying systems biology approaches.ObjectivesThis review aims to provide an overview of systems biology approaches that are relevant to metabolomics and to discuss some successful applications of these methods.MethodsWe review the most recent applications of systems biology tools in the field of metabolomics, such as network inference and analysis, metabolic modelling and pathways analysis.ResultsWe offer an ample overview of systems biology tools that can be applied to address metabolomics problems. The characteristics and application results of these tools are discussed also in a comparative manner.ConclusionsSystems biology-enhanced analysis of metabolomics data can provide insights into the molecular mechanisms originating the observed metabolic profiles and enhance the scientific impact of metabolomics studies.
De novo MYC addiction as an adaptive response of cancer cells to CDK4/6 inhibition
Cyclin‐dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF‐1α‐mediated responses to hypoxia. These MYC‐driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells. Synopsis MYC is a key driver of cancer cell metabolic adaptations after CDK4/6 inhibition, which includes upregulation of glutaminase 1 (GLS1) and mTOR‐dependent pathways. Combined inhibition of these targets synergistically and selectively inhibits cancer cell growth. CDK4/6 inhibition enhances glycolysis and mitochondrial metabolism and function. CDK4/6‐Cyclin D1 complexes phosphorylate MYC while inhibition of CDK4/6 stabilizes MYC, driving the ensuing metabolic reprogramming. MYC accumulation upregulates GLS1 and mTOR and blunts hypoxic response. Combined CDK4/6 and GLS1 inhibition has selective synergic effects on cancer cells. Graphical Abstract MYC is a key driver of cancer cell metabolic adaptations after CDK4/6 inhibition, which includes upregulation of glutaminase 1 (GLS1) and mTOR‐dependent pathways. Combined inhibition of these targets synergistically and selectively inhibits cancer cell growth.
Metabolomics: The Stethoscope for the Twenty-First Century
Metabolomics encompasses the systematic identification and quantification of all metabolic products in the human body. This field could provide clinicians with novel sets of diagnostic biomarkers for disease states in addition to quantifying treatment response to medications at an individualized level. This literature review aims to highlight the technology underpinning metabolic profiling, identify potential applications of metabolomics in clinical practice, and discuss the translational challenges that the field faces. We searched PubMed, MEDLINE, and EMBASE for primary and secondary research articles regarding clinical applications of metabolomics. Metabolic profiling can be performed using mass spectrometry and nuclear magnetic resonance-based techniques using a variety of biological samples. This is carried out in vivo or in vitro following careful sample collection, preparation, and analysis. The potential clinical applications constitute disruptive innovations in their respective specialities, particularly oncology and metabolic medicine. Outstanding issues currently preventing widespread clinical use are scalability of data interpretation, standardization of sample handling practice, and e-infrastructure. Routine utilization of metabolomics at a patient and population level will constitute an integral part of future healthcare provision.
Network modules uncover mechanisms of skeletal muscle dysfunction in COPD patients
Background Chronic obstructive pulmonary disease (COPD) patients often show skeletal muscle dysfunction that has a prominent negative impact on prognosis. The study aims to further explore underlying mechanisms of skeletal muscle dysfunction as a characteristic systemic effect of COPD, potentially modifiable with preventive interventions (i.e. muscle training). The research analyzes network module associated pathways and evaluates the findings using independent measurements. Methods We characterized the transcriptionally active network modules of interacting proteins in the vastus lateralis of COPD patients (n = 15, FEV 1 46 ± 12% pred, age 68 ± 7 years) and healthy sedentary controls (n = 12, age 65 ± 9  years), at rest and after an 8-week endurance training program. Network modules were functionally evaluated using experimental data derived from the same study groups. Results At baseline, we identified four COPD specific network modules indicating abnormalities in creatinine metabolism, calcium homeostasis, oxidative stress and inflammatory responses, showing statistically significant associations with exercise capacity (VO 2 peak, Watts peak, BODE index and blood lactate levels) (P < 0.05 each), but not with lung function (FEV 1 ). Training-induced network modules displayed marked differences between COPD and controls. Healthy subjects specific training adaptations were significantly associated with cell bioenergetics (P < 0.05) which, in turn, showed strong relationships with training-induced plasma metabolomic changes; whereas, effects of training in COPD were constrained to muscle remodeling. Conclusion In summary, altered muscle bioenergetics appears as the most striking finding, potentially driving other abnormal skeletal muscle responses. Trial registration The study was based on a retrospectively registered trial (May 2017), ClinicalTrials.gov identifier: NCT03169270
A Data Integration Methodology for Systems Biology
Different experimental technologies measure different aspects of a system and to differing depth and breadth. High-throughput assays have inherently high false-positive and false-negative rates. Moreover, each technology includes systematic biases of a different nature. These differences make network reconstruction from multiple data sets difficult and error-prone. Additionally, because of the rapid rate of progress in biotechnology, there is usually no curated exemplar data set from which one might estimate data integration parameters. To address these concerns, we have developed data integration methods that can handle multiple data sets differing in statistical power, type, size, and network coverage without requiring a curated training data set. Our methodology is general in purpose and may be applied to integrate data from any existing and future technologies. Here we outline our methods and then demonstrate their performance by applying them to simulated data sets. The results show that these methods select true-positive data elements much more accurately than classical approaches. In an accompanying companion paper, we demonstrate the applicability of our approach to biological data. We have integrated our methodology into a free open source software package named POINTILLIST.
Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations
Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.
Cysteine and Folate Metabolism Are Targetable Vulnerabilities of Metastatic Colorectal Cancer
With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC.
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer
Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models. In this study, we analysed essential genes for the biosynthesis of polyamines. Our analysis corroborates the importance of previously known regulators of the pathway, such as Adenosylmethionine Decarboxylase 1 (AMD1) and uncovers novel enzymes predicted to be relevant for polyamine homeostasis. We focused on Adenine Phosphoribosyltransferase (APRT) and demonstrated the detrimental consequence of APRT gene silencing on different leukaemia cell lines. Our results highlight the importance of revisiting the metabolic models used for in-silico gene essentiality analyses in order to maximize the potential for drug target identification in cancer.